Normalized defining polynomial
\( x^{16} - 8 x^{15} + 42 x^{14} - 144 x^{13} + 398 x^{12} - 820 x^{11} + 1426 x^{10} - 1812 x^{9} + 1963 x^{8} - 1204 x^{7} + 634 x^{6} + 328 x^{5} - 32 x^{4} + 32 x^{3} + 28 x^{2} + 8 x + 1 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(16777216000000000000=2^{36}\cdot 5^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $15.91$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{116857} a^{14} + \frac{53033}{116857} a^{13} - \frac{52718}{116857} a^{12} - \frac{19992}{116857} a^{11} + \frac{49017}{116857} a^{10} + \frac{15361}{116857} a^{9} - \frac{55252}{116857} a^{8} + \frac{27015}{116857} a^{7} - \frac{56837}{116857} a^{6} + \frac{45986}{116857} a^{5} - \frac{53585}{116857} a^{4} + \frac{16623}{116857} a^{3} + \frac{42059}{116857} a^{2} - \frac{27658}{116857} a + \frac{50413}{116857}$, $\frac{1}{65335800413} a^{15} - \frac{249646}{65335800413} a^{14} - \frac{23877824558}{65335800413} a^{13} - \frac{87928738}{734110117} a^{12} - \frac{23435085511}{65335800413} a^{11} - \frac{17972141920}{65335800413} a^{10} - \frac{27703874330}{65335800413} a^{9} + \frac{7852681682}{65335800413} a^{8} + \frac{18971989360}{65335800413} a^{7} + \frac{31246117999}{65335800413} a^{6} - \frac{18989358452}{65335800413} a^{5} + \frac{4436262671}{65335800413} a^{4} - \frac{26786658648}{65335800413} a^{3} - \frac{26361772769}{65335800413} a^{2} - \frac{6454802537}{65335800413} a - \frac{1967063107}{5025830801}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{2151902026}{5025830801} a^{15} + \frac{18102444780}{5025830801} a^{14} - \frac{97805667800}{5025830801} a^{13} + \frac{349836514580}{5025830801} a^{12} - \frac{998589508470}{5025830801} a^{11} + \frac{2168027543999}{5025830801} a^{10} - \frac{3937384081090}{5025830801} a^{9} + \frac{5463205208965}{5025830801} a^{8} - \frac{6361942701740}{5025830801} a^{7} + \frac{5037951870445}{5025830801} a^{6} - \frac{3224105485028}{5025830801} a^{5} + \frac{421599938165}{5025830801} a^{4} + \frac{27323013070}{5025830801} a^{3} - \frac{124991472095}{5025830801} a^{2} - \frac{21197006850}{5025830801} a - \frac{5130713880}{5025830801} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 958.044559076 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_8:C_2^2$ (as 16T35):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_8:C_2^2$ |
| Character table for $C_8:C_2^2$ |
Intermediate fields
| \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-5}) \), 4.0.320.1 x2, 4.2.400.1 x2, \(\Q(i, \sqrt{5})\), 8.2.1024000000.1 x2, 8.2.1024000000.2 x2, 8.0.2560000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.8.6.2 | $x^{8} + 15 x^{4} + 100$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.2 | $x^{8} + 15 x^{4} + 100$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |