Normalized defining polynomial
\( x^{16} - 8 x^{15} + 32 x^{14} - 84 x^{13} + 152 x^{12} - 164 x^{11} + 78 x^{10} + 48 x^{9} - 45 x^{8} + 44 x^{7} + 134 x^{6} + 156 x^{5} + 318 x^{4} + 176 x^{3} + 10 x^{2} - 8 x + 1 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(16777216000000000000=2^{36}\cdot 5^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $15.91$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{29} a^{11} + \frac{8}{29} a^{10} - \frac{10}{29} a^{9} - \frac{8}{29} a^{8} + \frac{14}{29} a^{7} + \frac{7}{29} a^{6} + \frac{1}{29} a^{5} + \frac{2}{29} a^{4} + \frac{4}{29} a^{3} + \frac{2}{29} a^{2} - \frac{1}{29} a + \frac{9}{29}$, $\frac{1}{145} a^{12} - \frac{1}{145} a^{11} - \frac{24}{145} a^{10} - \frac{1}{29} a^{9} - \frac{1}{145} a^{8} - \frac{32}{145} a^{7} - \frac{33}{145} a^{6} + \frac{22}{145} a^{5} - \frac{14}{145} a^{4} - \frac{34}{145} a^{3} - \frac{19}{145} a^{2} - \frac{8}{29} a + \frac{6}{145}$, $\frac{1}{145} a^{13} + \frac{26}{145} a^{10} + \frac{34}{145} a^{9} + \frac{57}{145} a^{8} - \frac{1}{29} a^{7} + \frac{19}{145} a^{6} + \frac{33}{145} a^{5} + \frac{2}{145} a^{4} + \frac{47}{145} a^{3} - \frac{9}{145} a^{2} - \frac{59}{145} a - \frac{59}{145}$, $\frac{1}{8845} a^{14} + \frac{8}{8845} a^{13} + \frac{9}{8845} a^{12} + \frac{72}{8845} a^{11} - \frac{2434}{8845} a^{10} + \frac{894}{8845} a^{9} + \frac{727}{8845} a^{8} + \frac{2346}{8845} a^{7} + \frac{853}{8845} a^{6} + \frac{1534}{8845} a^{5} + \frac{917}{8845} a^{4} - \frac{3489}{8845} a^{3} + \frac{678}{8845} a^{2} + \frac{3259}{8845} a + \frac{1382}{8845}$, $\frac{1}{4069947145} a^{15} - \frac{187648}{4069947145} a^{14} + \frac{332371}{813989429} a^{13} + \frac{2244937}{813989429} a^{12} + \frac{2619437}{369995195} a^{11} - \frac{137168096}{4069947145} a^{10} - \frac{356122526}{4069947145} a^{9} - \frac{147100108}{813989429} a^{8} + \frac{76934713}{4069947145} a^{7} - \frac{335629169}{4069947145} a^{6} - \frac{1680188021}{4069947145} a^{5} - \frac{29748149}{68982155} a^{4} - \frac{1736855193}{4069947145} a^{3} + \frac{66071128}{140343005} a^{2} - \frac{830720623}{4069947145} a + \frac{394771009}{4069947145}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{172220600}{813989429} a^{15} + \frac{1392593530}{813989429} a^{14} - \frac{5642966290}{813989429} a^{13} + \frac{15051342165}{813989429} a^{12} - \frac{2534754170}{73999039} a^{11} + \frac{31760476427}{813989429} a^{10} - \frac{18307145800}{813989429} a^{9} - \frac{4057456195}{813989429} a^{8} + \frac{6199199890}{813989429} a^{7} - \frac{7731706815}{813989429} a^{6} - \frac{22394469822}{813989429} a^{5} - \frac{430014405}{13796431} a^{4} - \frac{54138498180}{813989429} a^{3} - \frac{26898163155}{813989429} a^{2} - \frac{3223932500}{813989429} a + \frac{457802201}{813989429} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1039.87631431 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2:C_4$ (as 16T10):
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_2^2 : C_4$ |
| Character table for $C_2^2 : C_4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |