Normalized defining polynomial
\( x^{16} + 16 x^{14} + 248 x^{12} + 1696 x^{10} + 8098 x^{8} + 17744 x^{6} + 32408 x^{4} + 27104 x^{2} + 14641 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(167442686719647879731871744=2^{50}\cdot 3^{12}\cdot 23^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $43.55$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{40} a^{8} - \frac{3}{10} a^{6} - \frac{1}{5} a^{4} + \frac{3}{10} a^{2} - \frac{19}{40}$, $\frac{1}{40} a^{9} - \frac{3}{10} a^{7} - \frac{1}{5} a^{5} + \frac{3}{10} a^{3} - \frac{19}{40} a$, $\frac{1}{40} a^{10} + \frac{1}{5} a^{6} - \frac{1}{10} a^{4} + \frac{1}{8} a^{2} + \frac{3}{10}$, $\frac{1}{80} a^{11} - \frac{1}{80} a^{10} - \frac{1}{80} a^{9} - \frac{1}{80} a^{8} + \frac{1}{4} a^{7} + \frac{1}{20} a^{6} + \frac{1}{20} a^{5} + \frac{3}{20} a^{4} - \frac{7}{80} a^{3} - \frac{17}{80} a^{2} - \frac{9}{80} a - \frac{33}{80}$, $\frac{1}{80} a^{12} - \frac{1}{80} a^{8} + \frac{3}{10} a^{6} - \frac{3}{80} a^{4} - \frac{1}{5} a^{2} - \frac{29}{80}$, $\frac{1}{880} a^{13} + \frac{1}{176} a^{11} - \frac{1}{80} a^{10} + \frac{3}{440} a^{9} - \frac{1}{80} a^{8} - \frac{1}{44} a^{7} + \frac{1}{20} a^{6} + \frac{321}{880} a^{5} + \frac{3}{20} a^{4} - \frac{307}{880} a^{3} - \frac{17}{80} a^{2} + \frac{89}{440} a - \frac{33}{80}$, $\frac{1}{319000208560} a^{14} + \frac{82437921}{319000208560} a^{12} - \frac{2843387343}{319000208560} a^{10} - \frac{3234540417}{319000208560} a^{8} + \frac{2753540225}{63800041712} a^{6} + \frac{25369280069}{319000208560} a^{4} + \frac{22942212377}{63800041712} a^{2} + \frac{996557947}{2636365360}$, $\frac{1}{3509002294160} a^{15} + \frac{82437921}{3509002294160} a^{13} - \frac{683088995}{350900229416} a^{11} - \frac{1}{80} a^{10} - \frac{451377689}{219312643385} a^{9} - \frac{1}{80} a^{8} + \frac{348717920113}{3509002294160} a^{7} + \frac{1}{20} a^{6} - \frac{564781105767}{3509002294160} a^{5} + \frac{3}{20} a^{4} + \frac{820962280183}{1754501147080} a^{3} - \frac{17}{80} a^{2} - \frac{2066881}{659091340} a - \frac{33}{80}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{10}$, which has order $80$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 45687.5845647 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2:Q_8$ (as 16T31):
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_2^2:Q_8$ |
| Character table for $C_2^2:Q_8$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{6}) \), 4.0.158976.2, 4.0.39744.5, \(\Q(\sqrt{2}, \sqrt{3})\), 8.0.718886928384.34, 8.0.101093474304.27, 8.8.12230590464.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $23$ | 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |