Normalized defining polynomial
\( x^{16} - 2 x^{15} + 37 x^{14} - 56 x^{13} + 527 x^{12} - 504 x^{11} + 3603 x^{10} - 1916 x^{9} + 15611 x^{8} - 13300 x^{7} + 71594 x^{6} - 127204 x^{5} + 226080 x^{4} - 270588 x^{3} + 420159 x^{2} - 334330 x + 183479 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1672642834856679833600000000=2^{24}\cdot 5^{8}\cdot 761^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $50.29$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 761$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{292650117890619433163734412985134746807727} a^{15} - \frac{143690556446885812132967039283946982578284}{292650117890619433163734412985134746807727} a^{14} + \frac{74074585342768358552996487063415191682043}{292650117890619433163734412985134746807727} a^{13} + \frac{28384600695974958772449716416124949800220}{292650117890619433163734412985134746807727} a^{12} + \frac{60627949461669633606025808118306998083938}{292650117890619433163734412985134746807727} a^{11} + \frac{37717601779312978070879711719445684118006}{292650117890619433163734412985134746807727} a^{10} - \frac{70305452615244032273590715143866028636048}{292650117890619433163734412985134746807727} a^{9} + \frac{29358951048249987890244108684215246834667}{292650117890619433163734412985134746807727} a^{8} - \frac{119336277441392519885484246996106588548891}{292650117890619433163734412985134746807727} a^{7} + \frac{135633515193485511098272974914929366678241}{292650117890619433163734412985134746807727} a^{6} + \frac{30046161884325531774313294859549164938961}{292650117890619433163734412985134746807727} a^{5} + \frac{135372775646101882449774748842025621653197}{292650117890619433163734412985134746807727} a^{4} + \frac{81852116913350711238249406075761458670321}{292650117890619433163734412985134746807727} a^{3} - \frac{59615165071019408870446460756786876004326}{292650117890619433163734412985134746807727} a^{2} - \frac{38267766887313826285259078028165158915020}{292650117890619433163734412985134746807727} a - \frac{72308265606574337785548551845962500328643}{292650117890619433163734412985134746807727}$
Class group and class number
$C_{628}$, which has order $628$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9562.41394678 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2.D_4^2.C_2$ (as 16T659):
| A solvable group of order 256 |
| The 25 conjugacy class representatives for $C_2.D_4^2.C_2$ |
| Character table for $C_2.D_4^2.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{10}) \), \(\Q(\sqrt{2}, \sqrt{5})\), 8.8.1948160000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Arithmetically equvalently siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 761 | Data not computed | ||||||