Normalized defining polynomial
\( x^{16} - 7 x^{15} + 7 x^{14} + 80 x^{13} + 233 x^{12} - 1993 x^{11} - 8753 x^{10} + 59080 x^{9} + 301680 x^{8} - 3576936 x^{7} + 14199152 x^{6} - 28593728 x^{5} + 25364608 x^{4} + 4748416 x^{3} - 4564992 x^{2} - 67074048 x + 102711296 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(16697436405715421965395561284159977=37^{4}\cdot 73^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $137.69$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $37, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{5} + \frac{1}{4} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{8} a^{7} - \frac{1}{8} a^{6} + \frac{1}{8} a^{4} - \frac{1}{8} a^{3}$, $\frac{1}{8} a^{8} - \frac{1}{8} a^{6} + \frac{1}{8} a^{5} - \frac{1}{8} a^{3}$, $\frac{1}{32} a^{9} - \frac{1}{32} a^{7} + \frac{1}{32} a^{6} - \frac{1}{4} a^{5} - \frac{1}{32} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} + \frac{1}{4} a$, $\frac{1}{64} a^{10} + \frac{3}{64} a^{8} - \frac{3}{64} a^{7} - \frac{1}{8} a^{6} + \frac{3}{64} a^{5} + \frac{3}{16} a^{4} + \frac{1}{4} a^{3} - \frac{3}{8} a^{2} - \frac{1}{2} a$, $\frac{1}{64} a^{11} - \frac{1}{64} a^{9} - \frac{3}{64} a^{8} - \frac{1}{16} a^{7} - \frac{1}{64} a^{6} + \frac{3}{16} a^{5} - \frac{3}{16} a^{4} - \frac{3}{8} a^{3}$, $\frac{1}{512} a^{12} - \frac{1}{512} a^{11} - \frac{3}{512} a^{10} - \frac{3}{256} a^{9} + \frac{9}{512} a^{8} + \frac{29}{512} a^{7} - \frac{39}{512} a^{6} - \frac{55}{256} a^{5} + \frac{5}{32} a^{4} + \frac{31}{64} a^{3} - \frac{5}{32} a^{2} - \frac{3}{8} a$, $\frac{1}{2048} a^{13} + \frac{1}{2048} a^{12} - \frac{5}{2048} a^{11} + \frac{1}{512} a^{10} + \frac{29}{2048} a^{9} + \frac{31}{2048} a^{8} - \frac{125}{2048} a^{7} - \frac{39}{512} a^{6} - \frac{39}{512} a^{5} + \frac{63}{256} a^{4} - \frac{23}{64} a^{3} + \frac{17}{64} a^{2} - \frac{5}{16} a - \frac{1}{2}$, $\frac{1}{606208} a^{14} - \frac{131}{606208} a^{13} + \frac{567}{606208} a^{12} + \frac{147}{75776} a^{11} + \frac{3789}{606208} a^{10} - \frac{49}{16384} a^{9} + \frac{32007}{606208} a^{8} + \frac{3987}{75776} a^{7} + \frac{8501}{151552} a^{6} + \frac{3325}{75776} a^{5} - \frac{1395}{9472} a^{4} - \frac{147}{18944} a^{3} - \frac{47}{2368} a^{2} - \frac{521}{1184} a - \frac{53}{148}$, $\frac{1}{24253687193820298572564906551500341248} a^{15} - \frac{462034704814364934521325776537}{24253687193820298572564906551500341248} a^{14} + \frac{5400382191659450764325027384196169}{24253687193820298572564906551500341248} a^{13} + \frac{1308805411156982849388681683157719}{12126843596910149286282453275750170624} a^{12} - \frac{1974078433097516830162290190815767}{655505059292440501961213690581090304} a^{11} + \frac{73714012048672400308841300820886925}{24253687193820298572564906551500341248} a^{10} + \frac{118799847375770285189437881995822181}{24253687193820298572564906551500341248} a^{9} - \frac{384870820342457849996298291593485545}{12126843596910149286282453275750170624} a^{8} + \frac{72716788833727858667176020450397645}{6063421798455074643141226637875085312} a^{7} + \frac{139430705374100040861741989045945631}{1515855449613768660785306659468771328} a^{6} - \frac{2508367924815630668095019131725131}{40969066205777531372575855661318144} a^{5} - \frac{133869725217942596911017216384261283}{757927724806884330392653329734385664} a^{4} + \frac{41022170137553942943835568403153885}{378963862403442165196326664867192832} a^{3} - \frac{12700015161449173267924453092231351}{47370482800430270649540833108399104} a^{2} + \frac{8188951462670157213782274162551605}{23685241400215135324770416554199552} a + \frac{1392543431382914154919326370085685}{2960655175026891915596302069274944}$
Class group and class number
$C_{178}$, which has order $178$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 724794041959 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 32 conjugacy class representatives for t16n841 |
| Character table for t16n841 is not computed |
Intermediate fields
| \(\Q(\sqrt{73}) \), 4.4.389017.1, 8.0.11047398519097.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | $16$ | $16$ | R | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | $16$ | $16$ | $16$ | $16$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 37 | Data not computed | ||||||
| 73 | Data not computed | ||||||