Normalized defining polynomial
\( x^{16} - 5 x^{15} + 14 x^{14} - 136 x^{13} + 786 x^{12} - 2378 x^{11} + 18306 x^{10} - 55432 x^{9} + 66258 x^{8} - 415744 x^{7} + 1686286 x^{6} - 2215390 x^{5} + 2146605 x^{4} - 12386043 x^{3} + 36407032 x^{2} - 43706312 x + 19765336 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(16697436405715421965395561284159977=37^{4}\cdot 73^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $137.69$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $37, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{3}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{4}$, $\frac{1}{8} a^{11} - \frac{1}{8} a^{10} - \frac{1}{8} a^{9} - \frac{1}{8} a^{5} + \frac{1}{8} a^{4} + \frac{1}{8} a^{3}$, $\frac{1}{32} a^{12} - \frac{3}{32} a^{9} - \frac{1}{8} a^{8} - \frac{1}{8} a^{7} + \frac{7}{32} a^{6} + \frac{1}{8} a^{5} - \frac{1}{8} a^{4} - \frac{13}{32} a^{3} + \frac{1}{4} a^{2} + \frac{1}{4}$, $\frac{1}{32} a^{13} - \frac{3}{32} a^{10} - \frac{1}{8} a^{9} - \frac{1}{8} a^{8} + \frac{7}{32} a^{7} + \frac{1}{8} a^{6} - \frac{1}{8} a^{5} + \frac{3}{32} a^{4} + \frac{1}{4} a^{3} - \frac{1}{4} a$, $\frac{1}{64} a^{14} - \frac{1}{64} a^{13} - \frac{1}{64} a^{12} + \frac{1}{64} a^{11} - \frac{5}{64} a^{10} + \frac{7}{64} a^{9} - \frac{1}{64} a^{8} - \frac{15}{64} a^{7} - \frac{15}{64} a^{6} + \frac{15}{64} a^{5} + \frac{13}{64} a^{4} - \frac{31}{64} a^{3} + \frac{1}{4} a^{2} + \frac{3}{8} a - \frac{1}{8}$, $\frac{1}{4449751549381749633535818296986921119578699264} a^{15} - \frac{7356258733723385136219889752123493821970877}{2224875774690874816767909148493460559789349632} a^{14} - \frac{749886005874653470659853478487274038706019}{69527367959089838023997160890420642493417176} a^{13} + \frac{7940982763771614482410890627033792137659871}{556218943672718704191977287123365139947337408} a^{12} - \frac{27635541987780139967189922683527984763930587}{2224875774690874816767909148493460559789349632} a^{11} - \frac{108417732391088946046634098258865019544340059}{1112437887345437408383954574246730279894674816} a^{10} + \frac{28956450263688971730298362305021770585591599}{2224875774690874816767909148493460559789349632} a^{9} - \frac{219212616666387049736739472483178324645866487}{2224875774690874816767909148493460559789349632} a^{8} + \frac{45792495186176131565865551971260960139962141}{556218943672718704191977287123365139947337408} a^{7} - \frac{22241746644919535118381835588830759852143785}{556218943672718704191977287123365139947337408} a^{6} + \frac{243530354263069375940676502993297144170523923}{2224875774690874816767909148493460559789349632} a^{5} - \frac{153053223559793799067014922580730004283336235}{1112437887345437408383954574246730279894674816} a^{4} + \frac{780282001794963188764599182297880798222892233}{4449751549381749633535818296986921119578699264} a^{3} + \frac{35802869951033314543751482333553248611230299}{556218943672718704191977287123365139947337408} a^{2} - \frac{19383349567183821703310294338841257252513713}{69527367959089838023997160890420642493417176} a + \frac{227889878554967987720920312634895491454752335}{556218943672718704191977287123365139947337408}$
Class group and class number
$C_{178}$, which has order $178$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 8268925124.35 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 32 conjugacy class representatives for t16n841 |
| Character table for t16n841 is not computed |
Intermediate fields
| \(\Q(\sqrt{73}) \), 4.4.389017.1, 8.0.11047398519097.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | $16$ | $16$ | R | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | $16$ | $16$ | $16$ | $16$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 37 | Data not computed | ||||||
| 73 | Data not computed | ||||||