Normalized defining polynomial
\( x^{16} - x^{15} + 54 x^{14} - 159 x^{13} + 1505 x^{12} - 5493 x^{11} + 20123 x^{10} - 41890 x^{9} + 113688 x^{8} - 129668 x^{7} + 19031 x^{6} + 511794 x^{5} - 198259 x^{4} + 779238 x^{3} + 3313449 x^{2} + 1089775 x + 96091 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(166727223505134651779581257=3^{12}\cdot 73^{11}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $43.54$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{5} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{6} - \frac{1}{2} a$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{4} a^{8} + \frac{1}{4} a^{6} + \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{4}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{11} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} + \frac{1}{4} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{4} a^{2} + \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{2} a^{7} + \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} + \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{15944001882826891605015855890443385776973598393931372} a^{15} + \frac{382922998971708717499424257466800239755003577867824}{3986000470706722901253963972610846444243399598482843} a^{14} - \frac{1122162430397489422591043183758630814873239490453105}{15944001882826891605015855890443385776973598393931372} a^{13} - \frac{74179332772970290521644425634308067194089415392095}{3986000470706722901253963972610846444243399598482843} a^{12} - \frac{3605999852240305250868449342709503015219688617384263}{15944001882826891605015855890443385776973598393931372} a^{11} + \frac{785960053830846822542657350974223149103320234373225}{15944001882826891605015855890443385776973598393931372} a^{10} + \frac{1851718725235681098066010288369895179069318693027353}{15944001882826891605015855890443385776973598393931372} a^{9} - \frac{535030461436822705885771514327225193302086091198766}{3986000470706722901253963972610846444243399598482843} a^{8} + \frac{2625236144701137815134365435149032575006115823320355}{7972000941413445802507927945221692888486799196965686} a^{7} + \frac{816049289331053448863211557476204853152235429170459}{3986000470706722901253963972610846444243399598482843} a^{6} + \frac{105061697109574702479959279718216659898074452004347}{3986000470706722901253963972610846444243399598482843} a^{5} + \frac{2253918642367193964619467637807081059437267830457077}{15944001882826891605015855890443385776973598393931372} a^{4} + \frac{5941754990037734709961629213879043684427042421377319}{15944001882826891605015855890443385776973598393931372} a^{3} - \frac{3313157193663124789083071711513192314829251769677745}{15944001882826891605015855890443385776973598393931372} a^{2} - \frac{325787143072384129437550697684476244844193974165846}{3986000470706722901253963972610846444243399598482843} a + \frac{573850710078032489184202238393437427059244022906079}{3986000470706722901253963972610846444243399598482843}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{24044038594749408129669881}{2288826930690371296340103643804} a^{15} + \frac{28202609004671488318998647}{2288826930690371296340103643804} a^{14} - \frac{1302186431797809253272988501}{2288826930690371296340103643804} a^{13} + \frac{1011824049938208728120283256}{572206732672592824085025910951} a^{12} - \frac{9207391087410548145199112410}{572206732672592824085025910951} a^{11} + \frac{69137658173772289220924683053}{1144413465345185648170051821902} a^{10} - \frac{253106229127918654084804218135}{1144413465345185648170051821902} a^{9} + \frac{544415766585550010555832283013}{1144413465345185648170051821902} a^{8} - \frac{1450833688481110115579626311213}{1144413465345185648170051821902} a^{7} + \frac{3571008388413820000724812061217}{2288826930690371296340103643804} a^{6} - \frac{947166634141291610920057177257}{2288826930690371296340103643804} a^{5} - \frac{3093118903937836236966404090620}{572206732672592824085025910951} a^{4} + \frac{7044821845814271717624831659623}{2288826930690371296340103643804} a^{3} - \frac{19910447726642962643749898762207}{2288826930690371296340103643804} a^{2} - \frac{76028999015782248435995045332733}{2288826930690371296340103643804} a - \frac{11611918822440583865138265344083}{2288826930690371296340103643804} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3000100.42501 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4.D_4:C_4$ (as 16T289):
| A solvable group of order 128 |
| The 44 conjugacy class representatives for $C_4.D_4:C_4$ |
| Character table for $C_4.D_4:C_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 4.0.657.1, 8.0.31510377.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | R | $16$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ | $16$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | $16$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | $16$ | $16$ | $16$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $73$ | 73.8.7.8 | $x^{8} + 5703125$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 73.8.4.2 | $x^{8} - 389017 x^{2} + 369177133$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ | |