Properties

Label 16.0.16662527195...7393.2
Degree $16$
Signature $[0, 8]$
Discriminant $17^{7}\cdot 67^{8}$
Root discriminant $28.27$
Ramified primes $17, 67$
Class number $5$ (GRH)
Class group $[5]$ (GRH)
Galois group $C_4.D_4:C_4$ (as 16T289)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![277, 726, 2339, 1361, 2223, -1805, 1237, -1828, 1463, -836, 621, -371, 173, -77, 31, -8, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 8*x^15 + 31*x^14 - 77*x^13 + 173*x^12 - 371*x^11 + 621*x^10 - 836*x^9 + 1463*x^8 - 1828*x^7 + 1237*x^6 - 1805*x^5 + 2223*x^4 + 1361*x^3 + 2339*x^2 + 726*x + 277)
 
gp: K = bnfinit(x^16 - 8*x^15 + 31*x^14 - 77*x^13 + 173*x^12 - 371*x^11 + 621*x^10 - 836*x^9 + 1463*x^8 - 1828*x^7 + 1237*x^6 - 1805*x^5 + 2223*x^4 + 1361*x^3 + 2339*x^2 + 726*x + 277, 1)
 

Normalized defining polynomial

\( x^{16} - 8 x^{15} + 31 x^{14} - 77 x^{13} + 173 x^{12} - 371 x^{11} + 621 x^{10} - 836 x^{9} + 1463 x^{8} - 1828 x^{7} + 1237 x^{6} - 1805 x^{5} + 2223 x^{4} + 1361 x^{3} + 2339 x^{2} + 726 x + 277 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(166625271956783950277393=17^{7}\cdot 67^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $28.27$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $17, 67$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{17} a^{13} - \frac{4}{17} a^{12} - \frac{4}{17} a^{11} + \frac{8}{17} a^{10} - \frac{6}{17} a^{9} - \frac{1}{17} a^{8} - \frac{4}{17} a^{7} + \frac{3}{17} a^{6} - \frac{4}{17} a^{5} + \frac{5}{17} a^{4} - \frac{3}{17} a^{3} - \frac{6}{17} a^{2} + \frac{1}{17} a - \frac{7}{17}$, $\frac{1}{323} a^{14} + \frac{6}{323} a^{13} - \frac{61}{323} a^{12} - \frac{49}{323} a^{11} - \frac{113}{323} a^{10} - \frac{112}{323} a^{9} - \frac{116}{323} a^{8} + \frac{7}{17} a^{7} - \frac{161}{323} a^{6} - \frac{35}{323} a^{5} + \frac{13}{323} a^{4} + \frac{15}{323} a^{3} + \frac{145}{323} a^{2} + \frac{105}{323} a - \frac{70}{323}$, $\frac{1}{3336976091460318904097} a^{15} + \frac{703539701938356803}{3336976091460318904097} a^{14} - \frac{218468017298506374}{12984342768328089121} a^{13} - \frac{924092863624701858674}{3336976091460318904097} a^{12} + \frac{799247029246860900934}{3336976091460318904097} a^{11} - \frac{44179285712909554893}{3336976091460318904097} a^{10} + \frac{1486940118194324040434}{3336976091460318904097} a^{9} - \frac{766255704249583510655}{3336976091460318904097} a^{8} + \frac{17242200236210506450}{46999663260004491607} a^{7} - \frac{389973387927142674223}{3336976091460318904097} a^{6} + \frac{1221558122655801767673}{3336976091460318904097} a^{5} - \frac{841493778943863961322}{3336976091460318904097} a^{4} + \frac{1347250039163416884464}{3336976091460318904097} a^{3} - \frac{1502484186372710577074}{3336976091460318904097} a^{2} - \frac{1562390083768834835658}{3336976091460318904097} a - \frac{1351514149316324393195}{3336976091460318904097}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{5}$, which has order $5$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 26320.2365193 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_4.D_4:C_4$ (as 16T289):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 128
The 44 conjugacy class representatives for $C_4.D_4:C_4$
Character table for $C_4.D_4:C_4$ is not computed

Intermediate fields

\(\Q(\sqrt{-67}) \), 4.0.76313.1, 8.0.99002457473.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ $16$ $16$ $16$ $16$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ $16$ ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ $16$ ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$17$$\Q_{17}$$x + 3$$1$$1$$0$Trivial$[\ ]$
$\Q_{17}$$x + 3$$1$$1$$0$Trivial$[\ ]$
$\Q_{17}$$x + 3$$1$$1$$0$Trivial$[\ ]$
$\Q_{17}$$x + 3$$1$$1$$0$Trivial$[\ ]$
$\Q_{17}$$x + 3$$1$$1$$0$Trivial$[\ ]$
$\Q_{17}$$x + 3$$1$$1$$0$Trivial$[\ ]$
$\Q_{17}$$x + 3$$1$$1$$0$Trivial$[\ ]$
$\Q_{17}$$x + 3$$1$$1$$0$Trivial$[\ ]$
17.8.7.3$x^{8} - 17$$8$$1$$7$$C_8$$[\ ]_{8}$
$67$67.2.1.2$x^{2} + 268$$2$$1$$1$$C_2$$[\ ]_{2}$
67.2.1.2$x^{2} + 268$$2$$1$$1$$C_2$$[\ ]_{2}$
67.2.1.2$x^{2} + 268$$2$$1$$1$$C_2$$[\ ]_{2}$
67.2.1.2$x^{2} + 268$$2$$1$$1$$C_2$$[\ ]_{2}$
67.2.1.2$x^{2} + 268$$2$$1$$1$$C_2$$[\ ]_{2}$
67.2.1.2$x^{2} + 268$$2$$1$$1$$C_2$$[\ ]_{2}$
67.2.1.2$x^{2} + 268$$2$$1$$1$$C_2$$[\ ]_{2}$
67.2.1.2$x^{2} + 268$$2$$1$$1$$C_2$$[\ ]_{2}$