Normalized defining polynomial
\( x^{16} - 100 x^{14} + 4502 x^{12} - 118900 x^{10} + 2946513 x^{8} - 69044400 x^{6} + 980020000 x^{4} - 6596000000 x^{2} + 28900000000 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1662738954297838893504019372193112653824=2^{48}\cdot 17^{2}\cdot 103^{4}\cdot 3671^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $282.68$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17, 103, 3671$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{4} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{5} - \frac{1}{4} a^{3}$, $\frac{1}{8} a^{6} - \frac{1}{8} a^{5} - \frac{1}{8} a^{4} + \frac{1}{8} a^{3}$, $\frac{1}{8} a^{7} - \frac{1}{8} a^{3}$, $\frac{1}{128} a^{8} - \frac{1}{64} a^{6} - \frac{1}{8} a^{5} - \frac{7}{128} a^{4} + \frac{1}{8} a^{3} + \frac{1}{16} a^{2} - \frac{1}{8}$, $\frac{1}{640} a^{9} + \frac{3}{64} a^{7} - \frac{23}{640} a^{5} + \frac{3}{16} a^{3} - \frac{17}{40} a$, $\frac{1}{134400} a^{10} - \frac{1}{1280} a^{9} + \frac{1}{672} a^{8} + \frac{5}{128} a^{7} - \frac{5323}{134400} a^{6} - \frac{137}{1280} a^{5} - \frac{319}{2688} a^{4} - \frac{1}{32} a^{3} + \frac{517}{2100} a^{2} - \frac{23}{80} a - \frac{13}{168}$, $\frac{1}{672000} a^{11} - \frac{13}{26880} a^{9} + \frac{4127}{672000} a^{7} + \frac{1861}{26880} a^{5} + \frac{3611}{84000} a^{3} - \frac{173}{1680} a$, $\frac{1}{27074880000} a^{12} - \frac{1}{360998400} a^{10} - \frac{38459873}{27074880000} a^{8} - \frac{19483843}{360998400} a^{6} - \frac{1}{8} a^{5} + \frac{75445121}{966960000} a^{4} + \frac{1}{8} a^{3} - \frac{1487293}{67687200} a^{2} + \frac{11}{39816}$, $\frac{1}{270748800000} a^{13} - \frac{1}{54149760000} a^{12} - \frac{1}{3609984000} a^{11} + \frac{1}{721996800} a^{10} - \frac{38459873}{270748800000} a^{9} + \frac{38459873}{54149760000} a^{8} - \frac{199983043}{3609984000} a^{7} - \frac{25640957}{721996800} a^{6} + \frac{1163275121}{9669600000} a^{5} + \frac{45424879}{1933920000} a^{4} + \frac{57739007}{676872000} a^{3} + \frac{1487293}{135374400} a^{2} - \frac{19897}{398160} a + \frac{39805}{79632}$, $\frac{1}{190877904000000} a^{14} - \frac{37}{3817558080000} a^{12} - \frac{130451687}{47719476000000} a^{10} + \frac{2008136927}{3817558080000} a^{8} - \frac{1}{16} a^{7} - \frac{10097384857237}{190877904000000} a^{6} - \frac{1}{8} a^{5} + \frac{186646405891}{1908779040000} a^{4} - \frac{1}{16} a^{3} - \frac{536854019}{6362596800} a^{2} + \frac{1}{4} a - \frac{4084765}{11228112}$, $\frac{1}{1908779040000000} a^{15} - \frac{37}{38175580800000} a^{13} - \frac{1}{54149760000} a^{12} - \frac{130451687}{477194760000000} a^{11} + \frac{1}{721996800} a^{10} + \frac{2008136927}{38175580800000} a^{9} + \frac{38459873}{54149760000} a^{8} + \frac{13762353142763}{1908779040000000} a^{7} - \frac{25640957}{721996800} a^{6} + \frac{1141035925891}{19087790400000} a^{5} - \frac{196315121}{1933920000} a^{4} - \frac{1332178619}{63625968000} a^{3} + \frac{18409093}{135374400} a^{2} + \frac{1529291}{112281120} a - \frac{11}{79632}$
Class group and class number
$C_{3}\times C_{19596}$, which has order $58788$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 479437680.102 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2048 |
| The 80 conjugacy class representatives for t16n1392 are not computed |
| Character table for t16n1392 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\zeta_{16})^+\), 4.0.24199232.1, 4.0.774375424.1, 8.0.599657297295179776.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.26.4 | $x^{8} + 8 x^{7} + 12 x^{6} + 8 x^{5} + 8 x^{4} + 8 x^{3} + 2$ | $8$ | $1$ | $26$ | $C_2^2:C_4$ | $[2, 3, 7/2, 4]$ |
| 2.8.22.2 | $x^{8} + 10 x^{4} + 16 x + 4$ | $4$ | $2$ | $22$ | $C_4\times C_2$ | $[3, 4]^{2}$ | |
| $17$ | $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| $103$ | 103.4.0.1 | $x^{4} - x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 103.4.0.1 | $x^{4} - x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 103.8.4.1 | $x^{8} + 106090 x^{4} - 1092727 x^{2} + 2813772025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 3671 | Data not computed | ||||||