Normalized defining polynomial
\( x^{16} - 4 x^{15} - 259 x^{14} - 2479 x^{13} + 75130 x^{12} + 1956747 x^{11} + 25630993 x^{10} + 220167189 x^{9} + 2277412340 x^{8} + 32214962714 x^{7} + 489495293654 x^{6} + 5568200365384 x^{5} + 49556273455148 x^{4} + 319122527760339 x^{3} + 1553171376434168 x^{2} + 4893603985587031 x + 9312471101944163 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(166224470923824362155644060831037034515503474761=41^{15}\cdot 83^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $893.91$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $41, 83$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{404775904666135109985823057815169211363328327838783117393574801519337411126434378148380861583078800665757483} a^{15} + \frac{47145367438028563886674107207411411167446882719235069719433706914705000358794673852542539653893306057484916}{404775904666135109985823057815169211363328327838783117393574801519337411126434378148380861583078800665757483} a^{14} + \frac{120201160681282569713670620169472818225399961082057527082395981713383979624211614835161251411677248682394190}{404775904666135109985823057815169211363328327838783117393574801519337411126434378148380861583078800665757483} a^{13} - \frac{76996018986264212324868116285287589961857041628918433120416455718283848555464125828710941947431477312318637}{404775904666135109985823057815169211363328327838783117393574801519337411126434378148380861583078800665757483} a^{12} + \frac{89403970563768338627937631708706687568423940070576536415687310062786980092843067129065176896623452918053613}{404775904666135109985823057815169211363328327838783117393574801519337411126434378148380861583078800665757483} a^{11} + \frac{79555381091620603325373818584217706649912650451514453503805329436181881539448758221422699827845131817676522}{404775904666135109985823057815169211363328327838783117393574801519337411126434378148380861583078800665757483} a^{10} + \frac{146934672437338626332179124737948062539224050165843949141081283861733305614480361793173363474593765379884478}{404775904666135109985823057815169211363328327838783117393574801519337411126434378148380861583078800665757483} a^{9} - \frac{39059916957867688811365940922412865268843826779604062005061165509600467557911916755062922314389924242402056}{404775904666135109985823057815169211363328327838783117393574801519337411126434378148380861583078800665757483} a^{8} + \frac{145496358100252371839878167436695449658833618478330876507195842051406828809734458470229808279626895315419558}{404775904666135109985823057815169211363328327838783117393574801519337411126434378148380861583078800665757483} a^{7} - \frac{65423076254047710741881050590899968054658607840363593915165894363654425273575803217652011289027849548194254}{404775904666135109985823057815169211363328327838783117393574801519337411126434378148380861583078800665757483} a^{6} - \frac{185488334132470910571076576725351831652772979969302143283126318481949893439725595751801913611698608613524431}{404775904666135109985823057815169211363328327838783117393574801519337411126434378148380861583078800665757483} a^{5} + \frac{2461638864200898578085598652198606036401300230590695005746206682499744728566811200068893612847863241514150}{21303994982428163683464371463956274282280438307304374599661831658912495322443914639388466399109410561355657} a^{4} - \frac{10350214970188995325890537423817350706922265974227258011013719129283966190105529702861093890948762508084018}{21303994982428163683464371463956274282280438307304374599661831658912495322443914639388466399109410561355657} a^{3} + \frac{61196853005505394157824114961822884981662563536071985306303435721031218127268057883356759615249834430451809}{404775904666135109985823057815169211363328327838783117393574801519337411126434378148380861583078800665757483} a^{2} + \frac{144149282883654015922406129178797661016020772990464866050844569484723330271365723497020580794310970569194073}{404775904666135109985823057815169211363328327838783117393574801519337411126434378148380861583078800665757483} a + \frac{109508990714498832163411734025462747557927651931401441165183374550704504479717522360423157810030039073246287}{404775904666135109985823057815169211363328327838783117393574801519337411126434378148380861583078800665757483}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{80}$, which has order $1280$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 59776039123500 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4.D_4:C_4$ (as 16T260):
| A solvable group of order 128 |
| The 32 conjugacy class representatives for $C_4.D_4:C_4$ |
| Character table for $C_4.D_4:C_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-3403}) \), 4.0.474796769.1, 8.0.9242710845966413801.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | $16$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 41 | Data not computed | ||||||
| $83$ | 83.8.6.2 | $x^{8} + 249 x^{4} + 27556$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ |
| 83.8.6.2 | $x^{8} + 249 x^{4} + 27556$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ | |