Normalized defining polynomial
\( x^{16} - 6 x^{15} - 60 x^{14} - 3257 x^{13} + 48712 x^{12} - 89769 x^{11} - 3124258 x^{10} + 48276837 x^{9} + 79402250 x^{8} - 1118934092 x^{7} + 17677601785 x^{6} + 36052562864 x^{5} + 142489068976 x^{4} + 247366851315 x^{3} + 313772956188 x^{2} + 374090699762 x + 448464248273 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(166224470923824362155644060831037034515503474761=41^{15}\cdot 83^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $893.91$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $41, 83$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{657266631032519224392593613009030149787336919008287316525027886983020736286087895085107121382519} a^{15} + \frac{108128118626278408865308054507207848622431336642965724524532320642815660830048023655682437991417}{657266631032519224392593613009030149787336919008287316525027886983020736286087895085107121382519} a^{14} + \frac{301102564753078151533715476569363619857784251486516342755326989130871108382139949204152171015615}{657266631032519224392593613009030149787336919008287316525027886983020736286087895085107121382519} a^{13} - \frac{3733748918767989938462772748816321927536593877696481054269350755450521600094577234608088520023}{657266631032519224392593613009030149787336919008287316525027886983020736286087895085107121382519} a^{12} + \frac{65096161294002252266243545909806280027225063803881685820544066810172304784337307187407705080067}{657266631032519224392593613009030149787336919008287316525027886983020736286087895085107121382519} a^{11} - \frac{103233620142549440379205894682448920702643673947514541022282664677690510233560103098889726234151}{657266631032519224392593613009030149787336919008287316525027886983020736286087895085107121382519} a^{10} - \frac{79660844981937084831392192528975946762611444872970280110905241288248597363770366821910385774747}{657266631032519224392593613009030149787336919008287316525027886983020736286087895085107121382519} a^{9} - \frac{256990261617344798821245739825785089718217664721551013335835175271413274685493993586790120156934}{657266631032519224392593613009030149787336919008287316525027886983020736286087895085107121382519} a^{8} + \frac{190840670463076233490393055645748253681005997984900920408323551401552859167632038439257862139738}{657266631032519224392593613009030149787336919008287316525027886983020736286087895085107121382519} a^{7} - \frac{137254944941334275853316959128423870307989905932022003959031580327995043739057341550192438883270}{657266631032519224392593613009030149787336919008287316525027886983020736286087895085107121382519} a^{6} + \frac{39648131720877337255495926142482122673145025090855384037102482432043699264694661575726996607980}{657266631032519224392593613009030149787336919008287316525027886983020736286087895085107121382519} a^{5} - \frac{205911571216463063677896828857554859070718214730875373338677894123481677616130953006401293762507}{657266631032519224392593613009030149787336919008287316525027886983020736286087895085107121382519} a^{4} + \frac{176548433872570556542977542980538215719725531249991008097263823132192275889196505183626766577746}{657266631032519224392593613009030149787336919008287316525027886983020736286087895085107121382519} a^{3} - \frac{135987694746321394409959376080354928548682486313470723163630631534677829550761986995100015370533}{657266631032519224392593613009030149787336919008287316525027886983020736286087895085107121382519} a^{2} + \frac{972360258025792761430187662277809687214042686492102323307313557526457408511560102486953856014}{657266631032519224392593613009030149787336919008287316525027886983020736286087895085107121382519} a + \frac{166669170710270500803634733904894792752153256909422980995981153060909149795148876640675967648662}{657266631032519224392593613009030149787336919008287316525027886983020736286087895085107121382519}$
Class group and class number
$C_{2}\times C_{2}\times C_{4}\times C_{16}$, which has order $256$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 570145056055000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4.D_4:C_4$ (as 16T260):
| A solvable group of order 128 |
| The 32 conjugacy class representatives for $C_4.D_4:C_4$ |
| Character table for $C_4.D_4:C_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-3403}) \), 4.0.474796769.1, 8.0.9242710845966413801.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | $16$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 41 | Data not computed | ||||||
| $83$ | 83.8.6.2 | $x^{8} + 249 x^{4} + 27556$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ |
| 83.8.6.2 | $x^{8} + 249 x^{4} + 27556$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ | |