Normalized defining polynomial
\( x^{16} - 8 x^{14} + 24 x^{12} - 8 x^{11} - 16 x^{10} + 48 x^{9} - 44 x^{8} - 48 x^{7} + 112 x^{6} - 96 x^{5} + 28 x^{4} + 184 x^{3} - 24 x^{2} - 64 x + 19 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(16620815899787526144=2^{48}\cdot 3^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $15.90$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a$, $\frac{1}{6} a^{10} + \frac{1}{3} a^{5} - \frac{1}{3} a^{3} + \frac{1}{6} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{6} a^{11} + \frac{1}{3} a^{6} - \frac{1}{3} a^{4} + \frac{1}{6} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{6} a^{12} + \frac{1}{3} a^{7} - \frac{1}{3} a^{5} + \frac{1}{6} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2}$, $\frac{1}{6} a^{13} - \frac{1}{6} a^{8} - \frac{1}{3} a^{6} + \frac{1}{6} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{2}$, $\frac{1}{54} a^{14} + \frac{1}{27} a^{13} + \frac{1}{54} a^{12} + \frac{1}{18} a^{11} - \frac{1}{54} a^{10} - \frac{2}{27} a^{9} - \frac{1}{27} a^{8} + \frac{4}{9} a^{7} + \frac{1}{18} a^{6} + \frac{1}{9} a^{5} - \frac{23}{54} a^{4} + \frac{5}{54} a^{3} - \frac{5}{54} a^{2} - \frac{4}{27} a - \frac{10}{27}$, $\frac{1}{1429288406334} a^{15} - \frac{12700127167}{1429288406334} a^{14} - \frac{40625732641}{714644203167} a^{13} - \frac{13118422577}{476429468778} a^{12} - \frac{37856241919}{1429288406334} a^{11} - \frac{22993229234}{714644203167} a^{10} + \frac{217759724467}{1429288406334} a^{9} + \frac{35338902065}{476429468778} a^{8} + \frac{162796233073}{476429468778} a^{7} - \frac{36605832661}{476429468778} a^{6} + \frac{2180563040}{714644203167} a^{5} + \frac{33305215685}{1429288406334} a^{4} - \frac{153255058151}{1429288406334} a^{3} - \frac{37786614331}{714644203167} a^{2} + \frac{191851137349}{1429288406334} a + \frac{79107678523}{158809822926}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{153368}{2548269} a^{15} - \frac{40424}{2548269} a^{14} + \frac{1195376}{2548269} a^{13} + \frac{326813}{2548269} a^{12} - \frac{3421582}{2548269} a^{11} + \frac{81014}{849423} a^{10} + \frac{1967912}{2548269} a^{9} - \frac{12935237}{5096538} a^{8} + \frac{1796060}{849423} a^{7} + \frac{2597606}{849423} a^{6} - \frac{13842464}{2548269} a^{5} + \frac{11451502}{2548269} a^{4} - \frac{3499510}{2548269} a^{3} - \frac{8558044}{849423} a^{2} - \frac{612660}{283141} a + \frac{14347453}{5096538} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6607.64912558 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\wr C_2^2$ (as 16T128):
| A solvable group of order 64 |
| The 16 conjugacy class representatives for $C_2\wr C_2^2$ |
| Character table for $C_2\wr C_2^2$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-2}) \), \(\Q(\sqrt{6}) \), \(\Q(\sqrt{-2}, \sqrt{-3})\), 4.0.3072.2, 4.0.3072.1, 8.0.84934656.1, 8.0.254803968.1, 8.0.254803968.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.4.3.1 | $x^{4} + 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.3.1 | $x^{4} + 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |