Normalized defining polynomial
\( x^{16} - 16 x^{13} - 8 x^{12} + 8 x^{11} + 96 x^{10} + 72 x^{9} - 2 x^{8} - 192 x^{7} - 128 x^{6} + 16 x^{5} + 176 x^{4} + 96 x^{3} + 32 x^{2} + 16 x + 4 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(16620815899787526144=2^{48}\cdot 3^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $15.90$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{2} a^{9}$, $\frac{1}{6} a^{10} - \frac{1}{6} a^{9} - \frac{1}{6} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3}$, $\frac{1}{6} a^{11} + \frac{1}{6} a^{9} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{6} a^{12} + \frac{1}{6} a^{9} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{6} a^{13} + \frac{1}{6} a^{9} - \frac{1}{6} a^{8} - \frac{1}{3} a^{6} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{1002} a^{14} - \frac{10}{167} a^{13} + \frac{53}{1002} a^{11} - \frac{5}{334} a^{10} - \frac{13}{1002} a^{9} + \frac{50}{501} a^{8} + \frac{62}{501} a^{7} - \frac{7}{167} a^{6} - \frac{31}{167} a^{5} - \frac{46}{501} a^{4} + \frac{76}{167} a^{3} + \frac{205}{501} a^{2} - \frac{223}{501} a + \frac{176}{501}$, $\frac{1}{601533666} a^{15} - \frac{15025}{300766833} a^{14} + \frac{18711991}{601533666} a^{13} - \frac{13216919}{200511222} a^{12} - \frac{32688893}{601533666} a^{11} + \frac{16329017}{200511222} a^{10} - \frac{25794923}{200511222} a^{9} + \frac{8341390}{100255611} a^{8} - \frac{61027000}{300766833} a^{7} - \frac{100734460}{300766833} a^{6} - \frac{24582944}{300766833} a^{5} - \frac{4079326}{33418537} a^{4} + \frac{14558692}{300766833} a^{3} - \frac{77666090}{300766833} a^{2} - \frac{102029221}{300766833} a + \frac{55247737}{300766833}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{27472}{200111} a^{15} + \frac{27064}{600333} a^{14} - \frac{22096}{600333} a^{13} + \frac{1335158}{600333} a^{12} + \frac{216262}{600333} a^{11} - \frac{175864}{200111} a^{10} - \frac{7766422}{600333} a^{9} - \frac{7012205}{1200666} a^{8} + \frac{303568}{600333} a^{7} + \frac{15465296}{600333} a^{6} + \frac{5785076}{600333} a^{5} - \frac{541364}{200111} a^{4} - \frac{13611296}{600333} a^{3} - \frac{1381640}{200111} a^{2} - \frac{826940}{200111} a - \frac{628819}{600333} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3959.00387644 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\wr C_2^2$ (as 16T149):
| A solvable group of order 64 |
| The 16 conjugacy class representatives for $C_2\wr C_2^2$ |
| Character table for $C_2\wr C_2^2$ |
Intermediate fields
| \(\Q(\sqrt{-2}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{6}) \), \(\Q(\sqrt{-2}, \sqrt{-3})\), 4.0.3072.2, 4.0.3072.1, 8.0.84934656.1, 8.0.254803968.1 x2, 8.0.1358954496.2 x2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.8.6.2 | $x^{8} + 4 x^{7} + 14 x^{6} + 28 x^{5} + 43 x^{4} + 44 x^{3} + 110 x^{2} + 92 x + 22$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ | |