Properties

Label 16.0.16610417469...8521.1
Degree $16$
Signature $[0, 8]$
Discriminant $31^{8}\cdot 41^{7}$
Root discriminant $28.27$
Ramified primes $31, 41$
Class number $3$ (GRH)
Class group $[3]$ (GRH)
Galois group $(C_2^3\times C_4).D_4$ (as 16T675)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, 24, -22, -59, 9, 12, 22, 500, -773, 241, -13, 112, -52, 0, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - x^15 - 52*x^13 + 112*x^12 - 13*x^11 + 241*x^10 - 773*x^9 + 500*x^8 + 22*x^7 + 12*x^6 + 9*x^5 - 59*x^4 - 22*x^3 + 24*x^2 - x + 1)
 
gp: K = bnfinit(x^16 - x^15 - 52*x^13 + 112*x^12 - 13*x^11 + 241*x^10 - 773*x^9 + 500*x^8 + 22*x^7 + 12*x^6 + 9*x^5 - 59*x^4 - 22*x^3 + 24*x^2 - x + 1, 1)
 

Normalized defining polynomial

\( x^{16} - x^{15} - 52 x^{13} + 112 x^{12} - 13 x^{11} + 241 x^{10} - 773 x^{9} + 500 x^{8} + 22 x^{7} + 12 x^{6} + 9 x^{5} - 59 x^{4} - 22 x^{3} + 24 x^{2} - x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(166104174696434739378521=31^{8}\cdot 41^{7}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $28.27$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $31, 41$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{46} a^{14} + \frac{5}{46} a^{13} - \frac{2}{23} a^{12} - \frac{8}{23} a^{11} - \frac{9}{46} a^{10} + \frac{17}{46} a^{9} + \frac{5}{46} a^{8} + \frac{13}{46} a^{7} + \frac{17}{46} a^{6} + \frac{2}{23} a^{5} - \frac{13}{46} a^{4} - \frac{21}{46} a^{3} + \frac{2}{23} a^{2} + \frac{3}{46} a - \frac{1}{23}$, $\frac{1}{732965621454874} a^{15} + \frac{1687277623514}{366482810727437} a^{14} - \frac{35460798761877}{732965621454874} a^{13} - \frac{1487580121923}{31868070498038} a^{12} - \frac{295679107268721}{732965621454874} a^{11} - \frac{100716089759713}{366482810727437} a^{10} - \frac{80688708195332}{366482810727437} a^{9} + \frac{273231187400447}{732965621454874} a^{8} + \frac{93143002717423}{366482810727437} a^{7} + \frac{32914046729048}{366482810727437} a^{6} - \frac{36264237693209}{732965621454874} a^{5} + \frac{259227425303731}{732965621454874} a^{4} - \frac{74706417190522}{366482810727437} a^{3} + \frac{117064684373065}{732965621454874} a^{2} + \frac{50869160260016}{366482810727437} a + \frac{301836397804533}{732965621454874}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{3}$, which has order $3$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 22783.7503699 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$(C_2^3\times C_4).D_4$ (as 16T675):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 256
The 31 conjugacy class representatives for $(C_2^3\times C_4).D_4$
Character table for $(C_2^3\times C_4).D_4$ is not computed

Intermediate fields

\(\Q(\sqrt{-31}) \), 4.0.39401.1, 8.0.63649990841.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ $16$ ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{6}$ $16$ $16$ $16$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ $16$ R ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ $16$ ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$31$31.8.4.1$x^{8} + 32674 x^{4} - 119164 x^{2} + 266897569$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
31.8.4.1$x^{8} + 32674 x^{4} - 119164 x^{2} + 266897569$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$41$41.4.0.1$x^{4} - x + 17$$1$$4$$0$$C_4$$[\ ]^{4}$
41.4.3.4$x^{4} + 8856$$4$$1$$3$$C_4$$[\ ]_{4}$
41.8.4.1$x^{8} + 57154 x^{4} - 68921 x^{2} + 816644929$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$