Normalized defining polynomial
\( x^{16} - x^{15} - 5 x^{14} + 5 x^{13} + 2 x^{12} + 5 x^{11} + 7 x^{10} - 41 x^{9} + 25 x^{8} + 21 x^{7} - 26 x^{6} + 3 x^{5} + 10 x^{4} - 7 x^{3} - 2 x^{2} + 3 x + 1 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(164812863625282197=3^{12}\cdot 13^{3}\cdot 109^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $11.91$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 13, 109$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{221825} a^{15} - \frac{42982}{221825} a^{14} + \frac{50737}{221825} a^{13} + \frac{34583}{221825} a^{12} + \frac{37404}{221825} a^{11} - \frac{95544}{221825} a^{10} - \frac{69554}{221825} a^{9} - \frac{35092}{221825} a^{8} + \frac{101102}{221825} a^{7} + \frac{86709}{221825} a^{6} + \frac{8454}{44365} a^{5} - \frac{60117}{221825} a^{4} + \frac{71187}{221825} a^{3} - \frac{56229}{221825} a^{2} - \frac{4728}{221825} a + \frac{22471}{221825}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{51663}{11675} a^{15} + \frac{75791}{11675} a^{14} + \frac{220494}{11675} a^{13} - \frac{363179}{11675} a^{12} + \frac{78173}{11675} a^{11} - \frac{287128}{11675} a^{10} - \frac{231723}{11675} a^{9} + \frac{2212196}{11675} a^{8} - \frac{2371101}{11675} a^{7} + \frac{62108}{11675} a^{6} + \frac{271273}{2335} a^{5} - \frac{846229}{11675} a^{4} - \frac{108981}{11675} a^{3} + \frac{428977}{11675} a^{2} - \frac{106761}{11675} a - \frac{97373}{11675} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 250.805825535 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 35 conjugacy class representatives for t16n972 |
| Character table for t16n972 is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 4.0.981.1, 8.0.12510693.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $16$ | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | $16$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ | $16$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | $16$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | $16$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $13$ | 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.8.0.1 | $x^{8} + 4 x^{2} - x + 6$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| $109$ | 109.2.1.2 | $x^{2} + 654$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 109.2.1.2 | $x^{2} + 654$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 109.2.1.2 | $x^{2} + 654$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 109.2.1.2 | $x^{2} + 654$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 109.8.0.1 | $x^{8} - x + 6$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |