Normalized defining polynomial
\( x^{16} - 2 x^{15} + 40 x^{14} - 219 x^{13} - 26089 x^{12} + 290065 x^{11} + 9936127 x^{10} + 59571195 x^{9} - 428796243 x^{8} - 5933432448 x^{7} + 11182903017 x^{6} + 411196014948 x^{5} + 1496275591245 x^{4} - 4239496133880 x^{3} - 28777843094468 x^{2} + 23625665057905 x + 281742122142543 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1645941051244254531415289228525803373267801=41^{13}\cdot 59^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $435.04$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $41, 59$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{41} a^{12} - \frac{18}{41} a^{11} - \frac{14}{41} a^{10} + \frac{1}{41} a^{9} + \frac{9}{41} a^{8} - \frac{12}{41} a^{7} + \frac{14}{41} a^{6} + \frac{7}{41} a^{5} + \frac{11}{41} a^{4} + \frac{10}{41} a^{3} + \frac{14}{41} a^{2} + \frac{1}{41} a + \frac{18}{41}$, $\frac{1}{123} a^{13} - \frac{1}{123} a^{12} + \frac{49}{123} a^{11} + \frac{50}{123} a^{10} - \frac{5}{41} a^{9} + \frac{59}{123} a^{8} - \frac{26}{123} a^{7} - \frac{14}{41} a^{6} - \frac{34}{123} a^{5} - \frac{8}{123} a^{4} - \frac{7}{41} a^{3} - \frac{7}{123} a^{2} - \frac{47}{123} a + \frac{20}{41}$, $\frac{1}{123} a^{14} - \frac{7}{41} a^{11} - \frac{31}{123} a^{10} - \frac{4}{123} a^{9} - \frac{10}{41} a^{8} + \frac{16}{123} a^{7} - \frac{10}{123} a^{6} - \frac{3}{41} a^{5} + \frac{58}{123} a^{4} - \frac{16}{123} a^{3} + \frac{4}{41} a^{2} - \frac{35}{123} a + \frac{19}{41}$, $\frac{1}{2013903376332343088152260627825966566698466822820966388395651474115760572994069720741525755005431973} a^{15} - \frac{2486999171036915533939154314624564561626128365624200055965736670624055709760577261711210482072413}{2013903376332343088152260627825966566698466822820966388395651474115760572994069720741525755005431973} a^{14} - \frac{863822609834494977739250378853700974352761214742208753498003440586346299889111824338390607620789}{671301125444114362717420209275322188899488940940322129465217158038586857664689906913841918335143991} a^{13} - \frac{780314130359378394393893365466018558844880843023996213071653532520619676751868896812027124062904}{74589013938234929190824467697258020988832104548924681051690795337620761962743322990426879815015999} a^{12} - \frac{409010935309520391226496023725118992010940121494399274429608326547743887297566221036043450425680073}{2013903376332343088152260627825966566698466822820966388395651474115760572994069720741525755005431973} a^{11} - \frac{245820619515638894531176659703104902140577119060979288246681253095173645486026940834188375693904658}{671301125444114362717420209275322188899488940940322129465217158038586857664689906913841918335143991} a^{10} - \frac{94255253066492107159561315743818743782046452345668884157298516689643439677388234313596367872769492}{2013903376332343088152260627825966566698466822820966388395651474115760572994069720741525755005431973} a^{9} + \frac{404059820398381260006465518231350952387170192951551335263682362296352054368715236034167157379302087}{2013903376332343088152260627825966566698466822820966388395651474115760572994069720741525755005431973} a^{8} + \frac{687888989094683276782688112943807404582270828167746369364853363776745222859126402216676598728861758}{2013903376332343088152260627825966566698466822820966388395651474115760572994069720741525755005431973} a^{7} - \frac{738070732210890065118739446760023226868596791416036297450743417311718942146849323306509241020092995}{2013903376332343088152260627825966566698466822820966388395651474115760572994069720741525755005431973} a^{6} + \frac{973672021476906287706631212640904035678262061172936699990598747365606267916741619534861616273017589}{2013903376332343088152260627825966566698466822820966388395651474115760572994069720741525755005431973} a^{5} + \frac{369045369104130752103478540280955604103688101404484786116856458592847144468991394078361695333733370}{2013903376332343088152260627825966566698466822820966388395651474115760572994069720741525755005431973} a^{4} - \frac{493330863427732415122701619362027908004354240663002994970435503630492757521372691429808979111312629}{2013903376332343088152260627825966566698466822820966388395651474115760572994069720741525755005431973} a^{3} + \frac{948624324937869510929585609768347085089829620287452704682900016011340878754997415655867199355337370}{2013903376332343088152260627825966566698466822820966388395651474115760572994069720741525755005431973} a^{2} + \frac{714597572559151300254090980819774888235944668573434746033349508644268557650276208356053663872649475}{2013903376332343088152260627825966566698466822820966388395651474115760572994069720741525755005431973} a - \frac{252991678805341010034331290420855959094769203227403365561751937400504165182850874317024308677622573}{671301125444114362717420209275322188899488940940322129465217158038586857664689906913841918335143991}$
Class group and class number
$C_{4}\times C_{60}$, which has order $240$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5435428829400 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4.D_4:C_4$ (as 16T260):
| A solvable group of order 128 |
| The 32 conjugacy class representatives for $C_4.D_4:C_4$ |
| Character table for $C_4.D_4:C_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-59}) \), 4.0.142721.1, 8.0.1403871411605561.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $41$ | 41.4.3.4 | $x^{4} + 8856$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 41.4.3.3 | $x^{4} + 246$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 41.8.7.2 | $x^{8} - 1476$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |
| $59$ | 59.8.6.2 | $x^{8} + 177 x^{4} + 13924$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ |
| 59.8.6.2 | $x^{8} + 177 x^{4} + 13924$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ |