Normalized defining polynomial
\( x^{16} + 56 x^{14} - 48 x^{13} + 1112 x^{12} - 1456 x^{11} + 10632 x^{10} - 14592 x^{9} + 50410 x^{8} - 67552 x^{7} + 150072 x^{6} - 181520 x^{5} + 258952 x^{4} - 260368 x^{3} + 292616 x^{2} - 209824 x + 97081 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1638350662595178231031136256=2^{40}\cdot 3^{8}\cdot 17^{6}\cdot 97^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $50.22$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 17, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{8} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a + \frac{1}{8}$, $\frac{1}{8} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} + \frac{1}{8} a$, $\frac{1}{8} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} + \frac{1}{8} a^{2}$, $\frac{1}{8} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} + \frac{1}{8} a^{3} - \frac{1}{2}$, $\frac{1}{136} a^{12} + \frac{5}{136} a^{11} - \frac{7}{136} a^{10} - \frac{1}{68} a^{9} - \frac{1}{17} a^{8} + \frac{4}{17} a^{6} + \frac{3}{17} a^{5} + \frac{65}{136} a^{4} + \frac{33}{136} a^{3} + \frac{1}{136} a^{2} + \frac{13}{68} a - \frac{3}{17}$, $\frac{1}{136} a^{13} + \frac{1}{68} a^{11} - \frac{1}{136} a^{10} + \frac{1}{68} a^{9} + \frac{3}{68} a^{8} + \frac{4}{17} a^{7} - \frac{55}{136} a^{5} - \frac{5}{34} a^{4} + \frac{3}{68} a^{3} - \frac{13}{136} a^{2} - \frac{9}{68} a - \frac{25}{68}$, $\frac{1}{26384} a^{14} - \frac{7}{13192} a^{13} + \frac{9}{26384} a^{12} + \frac{547}{13192} a^{11} + \frac{681}{26384} a^{10} - \frac{579}{13192} a^{9} + \frac{1235}{26384} a^{8} + \frac{414}{1649} a^{7} - \frac{10303}{26384} a^{6} - \frac{147}{776} a^{5} - \frac{1639}{26384} a^{4} + \frac{6595}{13192} a^{3} + \frac{2313}{26384} a^{2} - \frac{4415}{13192} a - \frac{2069}{26384}$, $\frac{1}{493549780388813887596298582544} a^{15} + \frac{2642978499155858058425589}{493549780388813887596298582544} a^{14} - \frac{1487353613907864588599172209}{493549780388813887596298582544} a^{13} - \frac{758996828970514070511002153}{493549780388813887596298582544} a^{12} - \frac{2652435496065301420078666623}{493549780388813887596298582544} a^{11} - \frac{20183051616084722281008038113}{493549780388813887596298582544} a^{10} + \frac{9167120641633475107503023069}{493549780388813887596298582544} a^{9} - \frac{889865298185243009110936825}{29032340022871405152723446032} a^{8} - \frac{226407015119385900848505147679}{493549780388813887596298582544} a^{7} + \frac{13376982947742876461270257117}{493549780388813887596298582544} a^{6} + \frac{132037961865200618669157841887}{493549780388813887596298582544} a^{5} + \frac{224405183267684755084169581951}{493549780388813887596298582544} a^{4} - \frac{56289928349264001363617403847}{493549780388813887596298582544} a^{3} + \frac{28468517465887746375639188495}{493549780388813887596298582544} a^{2} - \frac{132000725566314229254129944531}{493549780388813887596298582544} a + \frac{103665300291761777736098271}{493549780388813887596298582544}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{116}$, which has order $928$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9072.35800888 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_2^4.C_2$ (as 16T595):
| A solvable group of order 256 |
| The 40 conjugacy class representatives for $C_2^3.C_2^4.C_2$ |
| Character table for $C_2^3.C_2^4.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{6}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{3}) \), 4.4.9792.1, 4.4.4352.1, \(\Q(\sqrt{2}, \sqrt{3})\), 8.8.1534132224.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $17$ | 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 17.8.6.2 | $x^{8} + 85 x^{4} + 2601$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $97$ | 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.2.1.1 | $x^{2} - 97$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.2.1.1 | $x^{2} - 97$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |