Normalized defining polynomial
\( x^{16} + 464 x^{14} + 83144 x^{12} + 7415648 x^{10} + 361387379 x^{8} + 9928151336 x^{6} + 154584535996 x^{4} + 1337601164112 x^{2} + 5770367861281 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1636299159807112140292096000000000000=2^{48}\cdot 5^{12}\cdot 47^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $183.39$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3760=2^{4}\cdot 5\cdot 47\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3760}(1,·)$, $\chi_{3760}(2821,·)$, $\chi_{3760}(3009,·)$, $\chi_{3760}(2443,·)$, $\chi_{3760}(2067,·)$, $\chi_{3760}(2069,·)$, $\chi_{3760}(1881,·)$, $\chi_{3760}(1503,·)$, $\chi_{3760}(1127,·)$, $\chi_{3760}(1129,·)$, $\chi_{3760}(941,·)$, $\chi_{3760}(563,·)$, $\chi_{3760}(3383,·)$, $\chi_{3760}(187,·)$, $\chi_{3760}(189,·)$, $\chi_{3760}(3007,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2402159} a^{11} - \frac{203178}{2402159} a^{9} + \frac{1073007}{2402159} a^{7} - \frac{568963}{2402159} a^{5} - \frac{79049}{2402159} a^{3} - \frac{969473}{2402159} a$, $\frac{1}{6915815761} a^{12} + \frac{1364223134}{6915815761} a^{10} + \frac{1324662616}{6915815761} a^{8} + \frac{2132548229}{6915815761} a^{6} + \frac{3365345710}{6915815761} a^{4} + \frac{2670231335}{6915815761} a^{2} - \frac{632}{2879}$, $\frac{1}{6915815761} a^{13} + \frac{347}{6915815761} a^{11} + \frac{2402194583}{6915815761} a^{9} - \frac{3071857498}{6915815761} a^{7} - \frac{927030244}{6915815761} a^{5} - \frac{68182456}{223090831} a^{3} + \frac{1949498884}{6915815761} a$, $\frac{1}{501379238229345183736989270719} a^{14} + \frac{18320090632718542138}{501379238229345183736989270719} a^{12} - \frac{103394043470063305831877738404}{501379238229345183736989270719} a^{10} + \frac{38438805969248938514658265075}{501379238229345183736989270719} a^{8} + \frac{111649989199650980154083317420}{501379238229345183736989270719} a^{6} + \frac{97823068859586554824549072905}{501379238229345183736989270719} a^{4} - \frac{228195081402386831108914581159}{501379238229345183736989270719} a^{2} + \frac{13206226843042993}{86888609232971999}$, $\frac{1}{501379238229345183736989270719} a^{15} + \frac{18320090632718542138}{501379238229345183736989270719} a^{13} - \frac{82195680988502768336393}{501379238229345183736989270719} a^{11} - \frac{51122429147367959161969670502}{501379238229345183736989270719} a^{9} - \frac{135084068008710066454671412228}{501379238229345183736989270719} a^{7} + \frac{86835199772925077439975419301}{501379238229345183736989270719} a^{5} + \frac{66901754734995900521057112440}{501379238229345183736989270719} a^{3} + \frac{68775626968101261471454}{208720254666466784145841} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{10}\times C_{329290}$, which has order $26343200$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 12198.951274811623 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4^2$ |
| Character table for $C_4^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $47$ | 47.4.2.2 | $x^{4} - 47 x^{2} + 28717$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 47.4.2.2 | $x^{4} - 47 x^{2} + 28717$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 47.4.2.2 | $x^{4} - 47 x^{2} + 28717$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 47.4.2.2 | $x^{4} - 47 x^{2} + 28717$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |