Normalized defining polynomial
\( x^{16} - 8 x^{15} + 49 x^{14} - 194 x^{13} + 952 x^{12} - 4478 x^{11} + 21258 x^{10} - 79934 x^{9} + 275476 x^{8} - 842176 x^{7} + 2544433 x^{6} - 6811142 x^{5} + 16013087 x^{4} - 29495626 x^{3} + 43412784 x^{2} - 43770752 x + 28550621 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1635131882791696000000000000=2^{16}\cdot 5^{12}\cdot 101^{4}\cdot 991^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $50.22$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 101, 991$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{55} a^{12} + \frac{4}{11} a^{11} - \frac{5}{11} a^{10} + \frac{13}{55} a^{9} + \frac{1}{11} a^{7} + \frac{24}{55} a^{6} + \frac{4}{11} a^{5} + \frac{4}{11} a^{4} + \frac{2}{55} a^{3} - \frac{5}{11} a^{2} + \frac{3}{11} a + \frac{1}{5}$, $\frac{1}{55} a^{13} + \frac{3}{11} a^{11} + \frac{18}{55} a^{10} + \frac{3}{11} a^{9} + \frac{1}{11} a^{8} - \frac{21}{55} a^{7} - \frac{4}{11} a^{6} + \frac{1}{11} a^{5} - \frac{13}{55} a^{4} - \frac{2}{11} a^{3} + \frac{4}{11} a^{2} - \frac{14}{55} a$, $\frac{1}{55} a^{14} - \frac{7}{55} a^{11} + \frac{1}{11} a^{10} - \frac{5}{11} a^{9} - \frac{21}{55} a^{8} + \frac{3}{11} a^{7} - \frac{5}{11} a^{6} + \frac{17}{55} a^{5} + \frac{4}{11} a^{4} - \frac{2}{11} a^{3} - \frac{24}{55} a^{2} - \frac{1}{11} a$, $\frac{1}{22554092843797620057196729443074840003569795} a^{15} - \frac{2832903083682818685200898712824034444392}{369739226947501968150766056443849836124095} a^{14} + \frac{12644234655591396080799043722140548799424}{2050372076708874550654248131188621818506345} a^{13} + \frac{35215459045493402074039067497910177429678}{22554092843797620057196729443074840003569795} a^{12} + \frac{239442034468890639406840663390784193827989}{2050372076708874550654248131188621818506345} a^{11} + \frac{2473354729558734594002380790895746458695707}{22554092843797620057196729443074840003569795} a^{10} - \frac{3045697631279380018070096322162738428453426}{22554092843797620057196729443074840003569795} a^{9} + \frac{1007614207681488509015952248268478078900022}{2050372076708874550654248131188621818506345} a^{8} + \frac{4149129064655418286006931208769513309397501}{22554092843797620057196729443074840003569795} a^{7} + \frac{808348525068396721317112144815595519727507}{22554092843797620057196729443074840003569795} a^{6} - \frac{4708675739789180769116822600129391843386919}{22554092843797620057196729443074840003569795} a^{5} + \frac{4663360366424519931173947960549584859283418}{22554092843797620057196729443074840003569795} a^{4} - \frac{5180934025785936943777947632976701840565559}{22554092843797620057196729443074840003569795} a^{3} + \frac{9446751270731383322493951099879990274758328}{22554092843797620057196729443074840003569795} a^{2} - \frac{5612645271771328865246864116093547599079471}{22554092843797620057196729443074840003569795} a + \frac{155494289582982700031987252172433721577551}{410074415341774910130849626237724363701269}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{32192717138676196738058222441562}{1379033497022171816398454872704056252129} a^{15} + \frac{231167047960860048771022492410824}{113035532542800968557250399401971823945} a^{14} - \frac{1016397713684129540232469275653056}{125366681547470165127132261154914204739} a^{13} + \frac{343686197037723365343068105882130204}{6895167485110859081992274363520281260645} a^{12} - \frac{80294900542083895611504742110322618}{626833407737350825635661305774571023695} a^{11} + \frac{1393868488274552862660670945427268135}{1379033497022171816398454872704056252129} a^{10} - \frac{27316331686041551720355433741514311358}{6895167485110859081992274363520281260645} a^{9} + \frac{11536371747272811467048843354354764591}{626833407737350825635661305774571023695} a^{8} - \frac{73560032144447731989136189592761931990}{1379033497022171816398454872704056252129} a^{7} + \frac{1238600065470196201049995803831259774431}{6895167485110859081992274363520281260645} a^{6} - \frac{3447492177570042337054884449017437012692}{6895167485110859081992274363520281260645} a^{5} + \frac{2042494951606652787590115898504250723095}{1379033497022171816398454872704056252129} a^{4} - \frac{22131526292419027109646913097895791649792}{6895167485110859081992274363520281260645} a^{3} + \frac{38521556656581094518656552155382954355409}{6895167485110859081992274363520281260645} a^{2} - \frac{8942341517858297515497318606705700718834}{1379033497022171816398454872704056252129} a + \frac{3093353919162266864218275274801359133489}{626833407737350825635661305774571023695} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 35334362.3413 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 43 conjugacy class representatives for t16n1161 |
| Character table for t16n1161 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 8.0.404000000.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 101 | Data not computed | ||||||
| 991 | Data not computed | ||||||