Normalized defining polynomial
\( x^{16} - 2 x^{15} + 99 x^{14} - 170 x^{13} + 4673 x^{12} - 6854 x^{11} + 135514 x^{10} - 166672 x^{9} + 2622159 x^{8} - 2617358 x^{7} + 34526242 x^{6} - 26419040 x^{5} + 301456646 x^{4} - 158389884 x^{3} + 1594732716 x^{2} - 435146928 x + 3916322369 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(16285050713501206114103002660864=2^{24}\cdot 7^{8}\cdot 17^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $89.28$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(952=2^{3}\cdot 7\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{952}(897,·)$, $\chi_{952}(69,·)$, $\chi_{952}(1,·)$, $\chi_{952}(393,·)$, $\chi_{952}(909,·)$, $\chi_{952}(13,·)$, $\chi_{952}(281,·)$, $\chi_{952}(729,·)$, $\chi_{952}(461,·)$, $\chi_{952}(349,·)$, $\chi_{952}(225,·)$, $\chi_{952}(293,·)$, $\chi_{952}(169,·)$, $\chi_{952}(237,·)$, $\chi_{952}(797,·)$, $\chi_{952}(841,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{64597181628488083810940653271054648024601169036769} a^{15} - \frac{3121241320959620447230328838207141919775732596574}{64597181628488083810940653271054648024601169036769} a^{14} + \frac{25886382003262712201500570629567835229925413816799}{64597181628488083810940653271054648024601169036769} a^{13} + \frac{13979196519662591769873660491919011756008215120788}{64597181628488083810940653271054648024601169036769} a^{12} - \frac{17538036610619725551122572420909068710599292381711}{64597181628488083810940653271054648024601169036769} a^{11} + \frac{1846465390180674306846767251193008421078395614576}{64597181628488083810940653271054648024601169036769} a^{10} + \frac{8484674926600408610706548929345970944286263264316}{64597181628488083810940653271054648024601169036769} a^{9} - \frac{15907513655765279480728611226318609513907103632447}{64597181628488083810940653271054648024601169036769} a^{8} + \frac{2764481138165829957140775974395865040234871906212}{64597181628488083810940653271054648024601169036769} a^{7} - \frac{6146980927405663072905371902547717433677570595840}{64597181628488083810940653271054648024601169036769} a^{6} - \frac{4999997639449980701656441558265950994980236613144}{64597181628488083810940653271054648024601169036769} a^{5} + \frac{12339933059506904745439996143635447334770012469701}{64597181628488083810940653271054648024601169036769} a^{4} - \frac{17451586482915275960378991840332411906192307913372}{64597181628488083810940653271054648024601169036769} a^{3} + \frac{10144346536837992463928954796449147630331323313957}{64597181628488083810940653271054648024601169036769} a^{2} - \frac{17793900521677835073861008908903114043303049753}{270281094679866459460002733351693087969042548271} a + \frac{20226359626413805666255303523790897172893567382481}{64597181628488083810940653271054648024601169036769}$
Class group and class number
$C_{16}\times C_{9040}$, which has order $144640$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3640.012213375973 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_8$ (as 16T5):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_8\times C_2$ |
| Character table for $C_8\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-238}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{-14}) \), \(\Q(\sqrt{-14}, \sqrt{17})\), 4.4.4913.1, 4.0.15407168.2, 8.0.237380825780224.45, \(\Q(\zeta_{17})^+\), 8.0.4035474038263808.6 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.12.1 | $x^{8} + 6 x^{6} + 8 x^{5} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ |
| 2.8.12.1 | $x^{8} + 6 x^{6} + 8 x^{5} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ | |
| 7 | Data not computed | ||||||
| 17 | Data not computed | ||||||