Normalized defining polynomial
\( x^{16} - 6 x^{15} + 14 x^{14} - 8 x^{13} - 29 x^{12} + 56 x^{11} - 4 x^{10} - 92 x^{9} + 139 x^{8} - 148 x^{7} + 170 x^{6} - 164 x^{5} + 112 x^{4} - 76 x^{3} + 56 x^{2} - 24 x + 4 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(16263137215612256256=2^{16}\cdot 3^{16}\cdot 7^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $15.87$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{14} a^{12} - \frac{3}{7} a^{11} + \frac{3}{7} a^{10} - \frac{1}{7} a^{9} + \frac{5}{14} a^{8} - \frac{2}{7} a^{5} + \frac{3}{14} a^{4} - \frac{2}{7} a^{3} + \frac{3}{7} a^{2} + \frac{1}{7} a + \frac{1}{7}$, $\frac{1}{14} a^{13} - \frac{1}{7} a^{11} + \frac{3}{7} a^{10} - \frac{1}{2} a^{9} + \frac{1}{7} a^{8} - \frac{2}{7} a^{6} - \frac{1}{2} a^{5} - \frac{2}{7} a^{3} - \frac{2}{7} a^{2} - \frac{1}{7}$, $\frac{1}{28} a^{14} - \frac{3}{14} a^{11} + \frac{5}{28} a^{10} - \frac{1}{14} a^{9} + \frac{5}{14} a^{8} + \frac{5}{14} a^{7} - \frac{1}{4} a^{6} + \frac{3}{14} a^{5} - \frac{3}{7} a^{4} + \frac{1}{14} a^{3} - \frac{1}{14} a^{2} - \frac{3}{7} a + \frac{1}{7}$, $\frac{1}{1126300} a^{15} - \frac{3387}{1126300} a^{14} - \frac{3166}{281575} a^{13} + \frac{4394}{281575} a^{12} + \frac{53883}{225260} a^{11} + \frac{365091}{1126300} a^{10} + \frac{1728}{11263} a^{9} - \frac{205621}{563150} a^{8} - \frac{329809}{1126300} a^{7} + \frac{288431}{1126300} a^{6} + \frac{236167}{563150} a^{5} + \frac{12883}{281575} a^{4} + \frac{25391}{56315} a^{3} + \frac{132877}{563150} a^{2} - \frac{112717}{281575} a - \frac{116154}{281575}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{387}{700} a^{15} - \frac{2169}{700} a^{14} + \frac{1133}{175} a^{13} - \frac{297}{175} a^{12} - \frac{2379}{140} a^{11} + \frac{16917}{700} a^{10} + \frac{58}{7} a^{9} - \frac{17027}{350} a^{8} + \frac{39917}{700} a^{7} - \frac{5629}{100} a^{6} + \frac{24029}{350} a^{5} - \frac{10754}{175} a^{4} + \frac{181}{5} a^{3} - \frac{9301}{350} a^{2} + \frac{3471}{175} a - \frac{823}{175} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4047.99234926 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times S_4$ (as 16T61):
| A solvable group of order 48 |
| The 10 conjugacy class representatives for $C_2\times S_4$ |
| Character table for $C_2\times S_4$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-7}) \), \(\Q(\sqrt{21}) \), 4.0.3024.1, \(\Q(\sqrt{-3}, \sqrt{-7})\), 8.0.4032758016.2, 8.0.82301184.1, 8.0.448084224.9 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 siblings: | 6.4.6858432.1, 6.4.16003008.3 |
| Degree 8 siblings: | 8.0.448084224.9, 8.0.82301184.1 |
| Degree 12 siblings: | 12.4.439022168653824.1, 12.0.47038089498624.1, 12.0.2304866385432576.1, 12.8.2304866385432576.1, 12.0.2304866385432576.5, 12.0.256096265048064.2 |
| Degree 24 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.8.11 | $x^{8} + 20 x^{2} + 4$ | $4$ | $2$ | $8$ | $S_4$ | $[4/3, 4/3]_{3}^{2}$ |
| 2.8.8.11 | $x^{8} + 20 x^{2} + 4$ | $4$ | $2$ | $8$ | $S_4$ | $[4/3, 4/3]_{3}^{2}$ | |
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.12.14.11 | $x^{12} + 6 x^{11} + 21 x^{10} + 36 x^{9} + 30 x^{8} + 36 x^{7} + 3 x^{6} + 36 x^{5} + 27 x^{4} - 9 x^{2} + 36$ | $6$ | $2$ | $14$ | $D_6$ | $[3/2]_{2}^{2}$ | |
| $7$ | 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |