Normalized defining polynomial
\( x^{16} - 6 x^{15} + 24 x^{14} - 84 x^{13} + 261 x^{12} - 570 x^{11} + 1026 x^{10} - 1881 x^{9} + 2032 x^{8} - 588 x^{7} + 1299 x^{6} - 1230 x^{5} + 2412 x^{4} + 1659 x^{3} - 1080 x^{2} + 1179 x + 937 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(162521790654198232131121=13^{12}\cdot 17^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $28.23$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} - \frac{1}{3}$, $\frac{1}{3} a^{9} - \frac{1}{3} a$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{3}$, $\frac{1}{6} a^{12} - \frac{1}{6} a^{9} - \frac{1}{2} a^{6} + \frac{1}{3} a^{4} - \frac{1}{2} a^{3} - \frac{1}{3} a - \frac{1}{2}$, $\frac{1}{6} a^{13} - \frac{1}{6} a^{10} - \frac{1}{2} a^{7} + \frac{1}{3} a^{5} - \frac{1}{2} a^{4} - \frac{1}{3} a^{2} - \frac{1}{2} a$, $\frac{1}{42} a^{14} - \frac{1}{21} a^{13} - \frac{1}{14} a^{12} + \frac{5}{42} a^{11} + \frac{1}{21} a^{10} + \frac{1}{42} a^{9} + \frac{5}{42} a^{8} - \frac{3}{7} a^{7} + \frac{17}{42} a^{6} + \frac{11}{42} a^{5} + \frac{2}{7} a^{4} - \frac{5}{42} a^{3} + \frac{1}{42} a^{2} + \frac{4}{21} a - \frac{17}{42}$, $\frac{1}{113256044154493110892518} a^{15} - \frac{1168656088176401499331}{113256044154493110892518} a^{14} - \frac{4371212538677141848819}{113256044154493110892518} a^{13} - \frac{1057270585315673622753}{37752014718164370297506} a^{12} + \frac{4087851542241551761111}{37752014718164370297506} a^{11} - \frac{2182507562369391651811}{16179434879213301556074} a^{10} + \frac{1200693651320228169305}{37752014718164370297506} a^{9} - \frac{8138621948969468151863}{113256044154493110892518} a^{8} - \frac{20357349677599992586909}{113256044154493110892518} a^{7} + \frac{1530923072365666219225}{113256044154493110892518} a^{6} - \frac{6932097730676859469145}{113256044154493110892518} a^{5} + \frac{14641608622103854235517}{37752014718164370297506} a^{4} - \frac{2375082848544324824075}{5393144959737767185358} a^{3} + \frac{43861185636161074271605}{113256044154493110892518} a^{2} - \frac{1855105532264530255535}{5393144959737767185358} a + \frac{9423134364258980928289}{56628022077246555446259}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 113461.432048 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2:C_4$ (as 16T10):
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_2^2 : C_4$ |
| Character table for $C_2^2 : C_4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | R | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.8.6.1 | $x^{8} - 13 x^{4} + 2704$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 13.8.6.1 | $x^{8} - 13 x^{4} + 2704$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $17$ | 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |