Normalized defining polynomial
\( x^{16} - 4 x^{15} + 10 x^{14} - 24 x^{13} + 50 x^{12} - 108 x^{11} + 136 x^{10} - 120 x^{9} + 95 x^{8} - 28 x^{7} + 184 x^{6} + 72 x^{5} + 226 x^{4} + 56 x^{3} + 126 x^{2} + 49 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(162447943996702457856=2^{32}\cdot 3^{8}\cdot 7^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $18.33$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{12} - \frac{1}{2}$, $\frac{1}{22} a^{13} - \frac{1}{22} a^{11} - \frac{2}{11} a^{10} + \frac{1}{22} a^{9} + \frac{2}{11} a^{8} + \frac{1}{22} a^{7} - \frac{2}{11} a^{6} - \frac{1}{22} a^{5} - \frac{4}{11} a^{4} + \frac{1}{22} a^{3} + \frac{4}{11} a^{2} - \frac{4}{11}$, $\frac{1}{5698} a^{14} - \frac{123}{5698} a^{13} - \frac{534}{2849} a^{12} - \frac{166}{2849} a^{11} - \frac{167}{5698} a^{10} + \frac{1201}{5698} a^{9} - \frac{317}{2849} a^{8} + \frac{822}{2849} a^{7} - \frac{675}{5698} a^{6} - \frac{103}{814} a^{5} + \frac{267}{2849} a^{4} - \frac{118}{2849} a^{3} - \frac{195}{2849} a^{2} - \frac{21}{407} a + \frac{20}{407}$, $\frac{1}{591653043674} a^{15} - \frac{10322978}{295826521837} a^{14} - \frac{9834354395}{591653043674} a^{13} - \frac{18236962179}{295826521837} a^{12} + \frac{1710392951}{15990622802} a^{11} + \frac{30931325281}{295826521837} a^{10} - \frac{67596830383}{295826521837} a^{9} - \frac{4922306223}{26893320167} a^{8} + \frac{221805501507}{591653043674} a^{7} + \frac{127506459756}{295826521837} a^{6} - \frac{59805181043}{295826521837} a^{5} - \frac{76420401845}{295826521837} a^{4} - \frac{110271122084}{295826521837} a^{3} - \frac{61038022253}{295826521837} a^{2} + \frac{10506666465}{84521863382} a - \frac{18249590872}{42260931691}$
Class group and class number
$C_{4}$, which has order $4$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{3574588}{1142187343} a^{15} + \frac{193166350}{7995311401} a^{14} - \frac{579432360}{7995311401} a^{13} + \frac{123352678}{726846491} a^{12} - \frac{276505692}{726846491} a^{11} + \frac{6379228764}{7995311401} a^{10} - \frac{11361779832}{7995311401} a^{9} + \frac{11245280771}{7995311401} a^{8} - \frac{8099908676}{7995311401} a^{7} + \frac{5653367884}{7995311401} a^{6} - \frac{916537608}{1142187343} a^{5} + \frac{1263822514}{726846491} a^{4} + \frac{4936397744}{7995311401} a^{3} + \frac{20607684606}{7995311401} a^{2} + \frac{122413616}{1142187343} a + \frac{1679138947}{1142187343} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4446.01541964 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times D_4$ (as 16T25):
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_2^2 \times D_4$ |
| Character table for $C_2^2 \times D_4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.16.6 | $x^{8} + 4 x^{6} + 8 x^{2} + 4$ | $4$ | $2$ | $16$ | $C_2^3$ | $[2, 3]^{2}$ |
| 2.8.16.6 | $x^{8} + 4 x^{6} + 8 x^{2} + 4$ | $4$ | $2$ | $16$ | $C_2^3$ | $[2, 3]^{2}$ | |
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $7$ | 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |