Properties

Label 16.0.16244794399...7856.1
Degree $16$
Signature $[0, 8]$
Discriminant $2^{32}\cdot 3^{8}\cdot 7^{8}$
Root discriminant $18.33$
Ramified primes $2, 3, 7$
Class number $4$
Class group $[4]$
Galois group $C_2^4$ (as 16T3)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![256, 0, 0, 0, -16, 0, 0, 0, -15, 0, 0, 0, -1, 0, 0, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - x^12 - 15*x^8 - 16*x^4 + 256)
 
gp: K = bnfinit(x^16 - x^12 - 15*x^8 - 16*x^4 + 256, 1)
 

Normalized defining polynomial

\( x^{16} - x^{12} - 15 x^{8} - 16 x^{4} + 256 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(162447943996702457856=2^{32}\cdot 3^{8}\cdot 7^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $18.33$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 7$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(168=2^{3}\cdot 3\cdot 7\)
Dirichlet character group:    $\lbrace$$\chi_{168}(1,·)$, $\chi_{168}(71,·)$, $\chi_{168}(139,·)$, $\chi_{168}(13,·)$, $\chi_{168}(83,·)$, $\chi_{168}(85,·)$, $\chi_{168}(155,·)$, $\chi_{168}(29,·)$, $\chi_{168}(97,·)$, $\chi_{168}(167,·)$, $\chi_{168}(41,·)$, $\chi_{168}(43,·)$, $\chi_{168}(113,·)$, $\chi_{168}(55,·)$, $\chi_{168}(125,·)$, $\chi_{168}(127,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} + \frac{1}{3} a^{4} + \frac{1}{3}$, $\frac{1}{6} a^{9} + \frac{1}{6} a^{5} + \frac{1}{6} a$, $\frac{1}{12} a^{10} - \frac{5}{12} a^{6} + \frac{1}{12} a^{2}$, $\frac{1}{24} a^{11} + \frac{7}{24} a^{7} + \frac{1}{24} a^{3}$, $\frac{1}{720} a^{12} + \frac{1}{48} a^{8} - \frac{17}{48} a^{4} - \frac{16}{45}$, $\frac{1}{1440} a^{13} + \frac{1}{96} a^{9} - \frac{17}{96} a^{5} - \frac{8}{45} a$, $\frac{1}{2880} a^{14} + \frac{1}{192} a^{10} + \frac{79}{192} a^{6} - \frac{4}{45} a^{2}$, $\frac{1}{5760} a^{15} + \frac{1}{384} a^{11} - \frac{113}{384} a^{7} - \frac{2}{45} a^{3}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{4}$, which has order $4$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -\frac{7}{5760} a^{15} - \frac{7}{384} a^{11} + \frac{23}{384} a^{7} + \frac{14}{45} a^{3} \) (order $24$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 16359.7684053 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^4$ (as 16T3):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 16
The 16 conjugacy class representatives for $C_2^4$
Character table for $C_2^4$

Intermediate fields

\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-2}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-6}) \), \(\Q(\sqrt{6}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-14}) \), \(\Q(\sqrt{14}) \), \(\Q(\sqrt{7}) \), \(\Q(\sqrt{-7}) \), \(\Q(\sqrt{21}) \), \(\Q(\sqrt{-21}) \), \(\Q(\sqrt{-42}) \), \(\Q(\sqrt{42}) \), \(\Q(\zeta_{8})\), \(\Q(i, \sqrt{6})\), \(\Q(\zeta_{12})\), \(\Q(\sqrt{-2}, \sqrt{3})\), \(\Q(\sqrt{-2}, \sqrt{-3})\), \(\Q(\sqrt{2}, \sqrt{-3})\), \(\Q(\sqrt{2}, \sqrt{3})\), \(\Q(i, \sqrt{14})\), \(\Q(i, \sqrt{7})\), \(\Q(i, \sqrt{21})\), \(\Q(i, \sqrt{42})\), \(\Q(\sqrt{-2}, \sqrt{7})\), \(\Q(\sqrt{-2}, \sqrt{-7})\), \(\Q(\sqrt{-2}, \sqrt{21})\), \(\Q(\sqrt{-2}, \sqrt{-21})\), \(\Q(\sqrt{2}, \sqrt{-7})\), \(\Q(\sqrt{2}, \sqrt{7})\), \(\Q(\sqrt{2}, \sqrt{21})\), \(\Q(\sqrt{2}, \sqrt{-21})\), \(\Q(\sqrt{-6}, \sqrt{-14})\), \(\Q(\sqrt{-6}, \sqrt{14})\), \(\Q(\sqrt{-6}, \sqrt{7})\), \(\Q(\sqrt{-6}, \sqrt{-7})\), \(\Q(\sqrt{6}, \sqrt{-14})\), \(\Q(\sqrt{6}, \sqrt{14})\), \(\Q(\sqrt{6}, \sqrt{7})\), \(\Q(\sqrt{6}, \sqrt{-7})\), \(\Q(\sqrt{3}, \sqrt{-14})\), \(\Q(\sqrt{3}, \sqrt{14})\), \(\Q(\sqrt{3}, \sqrt{7})\), \(\Q(\sqrt{3}, \sqrt{-7})\), \(\Q(\sqrt{-3}, \sqrt{-14})\), \(\Q(\sqrt{-3}, \sqrt{14})\), \(\Q(\sqrt{-3}, \sqrt{7})\), \(\Q(\sqrt{-3}, \sqrt{-7})\), \(\Q(\zeta_{24})\), 8.0.157351936.1, 8.0.12745506816.8, 8.0.12745506816.1, 8.0.12745506816.7, 8.0.12745506816.9, 8.0.49787136.1, 8.0.12745506816.3, 8.0.12745506816.2, 8.0.12745506816.5, 8.0.796594176.1, 8.0.796594176.2, 8.0.12745506816.4, 8.0.12745506816.6, 8.8.12745506816.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.2.0.1}{2} }^{8}$ R ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.8.16.6$x^{8} + 4 x^{6} + 8 x^{2} + 4$$4$$2$$16$$C_2^3$$[2, 3]^{2}$
2.8.16.6$x^{8} + 4 x^{6} + 8 x^{2} + 4$$4$$2$$16$$C_2^3$$[2, 3]^{2}$
$3$3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$7$7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$