Properties

Label 16.0.16242891971...2976.1
Degree $16$
Signature $[0, 8]$
Discriminant $2^{40}\cdot 41^{6}\cdot 311$
Root discriminant $32.60$
Ramified primes $2, 41, 311$
Class number $66$ (GRH)
Class group $[66]$ (GRH)
Galois group 16T1722

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![311, 0, 1610, 0, 3247, 0, 3420, 0, 2092, 0, 770, 0, 168, 0, 20, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 + 20*x^14 + 168*x^12 + 770*x^10 + 2092*x^8 + 3420*x^6 + 3247*x^4 + 1610*x^2 + 311)
 
gp: K = bnfinit(x^16 + 20*x^14 + 168*x^12 + 770*x^10 + 2092*x^8 + 3420*x^6 + 3247*x^4 + 1610*x^2 + 311, 1)
 

Normalized defining polynomial

\( x^{16} + 20 x^{14} + 168 x^{12} + 770 x^{10} + 2092 x^{8} + 3420 x^{6} + 3247 x^{4} + 1610 x^{2} + 311 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(1624289197145680800382976=2^{40}\cdot 41^{6}\cdot 311\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $32.60$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 41, 311$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{66}$, which has order $66$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  \( a^{2} + 3 \),  \( 2 a^{14} + 35 a^{12} + 249 a^{10} + 925 a^{8} + 1915 a^{6} + 2175 a^{4} + 1228 a^{2} + 257 \),  \( a^{14} + 17 a^{12} + 117 a^{10} + 418 a^{8} + 825 a^{6} + 882 a^{4} + 461 a^{2} + 88 \),  \( a^{2} + 2 \),  \( a^{4} + 5 a^{2} + 5 \),  \( a^{12} + 16 a^{10} + 100 a^{8} + 307 a^{6} + 476 a^{4} + 341 a^{2} + 85 \),  \( a^{14} + 18 a^{12} + 132 a^{10} + 507 a^{8} + 1091 a^{6} + 1301 a^{4} + 785 a^{2} + 180 \) (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 2873.19936942 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1722:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 8192
The 104 conjugacy class representatives for t16n1722 are not computed
Character table for t16n1722 is not computed

Intermediate fields

\(\Q(\sqrt{2}) \), 4.4.2624.1, 8.8.282300416.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R $16$ ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ $16$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ R ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{6}$ ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$41$41.4.3.4$x^{4} + 8856$$4$$1$$3$$C_4$$[\ ]_{4}$
41.4.3.4$x^{4} + 8856$$4$$1$$3$$C_4$$[\ ]_{4}$
41.8.0.1$x^{8} - x + 12$$1$$8$$0$$C_8$$[\ ]^{8}$
311Data not computed