Properties

Label 16.0.162...456.7
Degree $16$
Signature $[0, 8]$
Discriminant $1.623\times 10^{21}$
Root discriminant \(21.17\)
Ramified primes $2,7$
Class number $2$
Class group [2]
Galois group $QD_{16}$ (as 16T12)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^16 + 4*x^14 + 32*x^12 + 100*x^10 + 141*x^8 + 120*x^6 + 92*x^4 + 32*x^2 + 4)
 
gp: K = bnfinit(y^16 + 4*y^14 + 32*y^12 + 100*y^10 + 141*y^8 + 120*y^6 + 92*y^4 + 32*y^2 + 4, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^16 + 4*x^14 + 32*x^12 + 100*x^10 + 141*x^8 + 120*x^6 + 92*x^4 + 32*x^2 + 4);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^16 + 4*x^14 + 32*x^12 + 100*x^10 + 141*x^8 + 120*x^6 + 92*x^4 + 32*x^2 + 4)
 

\( x^{16} + 4x^{14} + 32x^{12} + 100x^{10} + 141x^{8} + 120x^{6} + 92x^{4} + 32x^{2} + 4 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $16$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 8]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(1622647227216566419456\) \(\medspace = 2^{48}\cdot 7^{8}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(21.17\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{3}7^{1/2}\approx 21.166010488516726$
Ramified primes:   \(2\), \(7\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Gal(K/\Q) }$:  $16$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{56}a^{12}-\frac{1}{2}a^{10}-\frac{1}{4}a^{8}-\frac{3}{14}a^{6}-\frac{1}{8}a^{4}+\frac{11}{28}$, $\frac{1}{56}a^{13}-\frac{1}{2}a^{11}-\frac{1}{4}a^{9}-\frac{3}{14}a^{7}-\frac{1}{8}a^{5}+\frac{11}{28}a$, $\frac{1}{33544}a^{14}-\frac{1}{16772}a^{12}+\frac{431}{2396}a^{10}-\frac{320}{4193}a^{8}-\frac{1271}{33544}a^{6}+\frac{211}{2396}a^{4}+\frac{3763}{16772}a^{2}-\frac{2895}{8386}$, $\frac{1}{67088}a^{15}-\frac{1}{33544}a^{13}-\frac{1965}{4792}a^{11}-\frac{160}{4193}a^{9}-\frac{1271}{67088}a^{7}+\frac{211}{4792}a^{5}-\frac{13009}{33544}a^{3}+\frac{5491}{16772}a$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{2}$, which has order $2$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $7$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{613}{4193}a^{14}+\frac{19543}{33544}a^{12}+\frac{5567}{1198}a^{10}+\frac{242995}{16772}a^{8}+\frac{165077}{8386}a^{6}+\frac{75417}{4792}a^{4}+\frac{43068}{4193}a^{2}+\frac{38573}{16772}$, $\frac{811}{4792}a^{14}+\frac{2624}{4193}a^{12}+\frac{12451}{2396}a^{10}+\frac{18263}{1198}a^{8}+\frac{614661}{33544}a^{6}+\frac{14599}{1198}a^{4}+\frac{20853}{2396}a^{2}+\frac{5914}{4193}$, $\frac{19403}{67088}a^{15}-\frac{3979}{16772}a^{14}+\frac{18751}{16772}a^{13}-\frac{26613}{33544}a^{12}+\frac{43781}{4792}a^{11}-\frac{4199}{599}a^{10}+\frac{467169}{16772}a^{9}-\frac{317225}{16772}a^{8}+\frac{2552555}{67088}a^{7}-\frac{322909}{16772}a^{6}+\frac{20050}{599}a^{5}-\frac{52395}{4792}a^{4}+\frac{877117}{33544}a^{3}-\frac{87827}{8386}a^{2}+\frac{23845}{4193}a-\frac{27611}{16772}$, $\frac{31277}{33544}a^{15}-\frac{7849}{16772}a^{14}+\frac{59771}{16772}a^{13}-\frac{56657}{33544}a^{12}+\frac{69975}{2396}a^{11}-\frac{8569}{599}a^{10}+\frac{369035}{4193}a^{9}-\frac{691261}{16772}a^{8}+\frac{3882885}{33544}a^{7}-\frac{833475}{16772}a^{6}+\frac{216503}{2396}a^{5}-\frac{177519}{4792}a^{4}+\frac{1129951}{16772}a^{3}-\frac{251875}{8386}a^{2}+\frac{134497}{8386}a-\frac{75715}{16772}$, $\frac{18563}{67088}a^{15}-\frac{3889}{16772}a^{14}+\frac{1241}{1198}a^{13}-\frac{2055}{2396}a^{12}+\frac{41141}{4792}a^{11}-\frac{8543}{1198}a^{10}+\frac{426135}{16772}a^{9}-\frac{175277}{8386}a^{8}+\frac{309061}{9584}a^{7}-\frac{60931}{2396}a^{6}+\frac{55673}{2396}a^{5}-\frac{40031}{2396}a^{4}+\frac{533893}{33544}a^{3}-\frac{101369}{8386}a^{2}+\frac{2781}{1198}a-\frac{2353}{1198}$, $\frac{811}{4792}a^{15}-\frac{421}{4792}a^{14}+\frac{2624}{4193}a^{13}-\frac{10279}{33544}a^{12}+\frac{12451}{2396}a^{11}-\frac{6267}{2396}a^{10}+\frac{18263}{1198}a^{9}-\frac{17591}{2396}a^{8}+\frac{614661}{33544}a^{7}-\frac{253287}{33544}a^{6}+\frac{14599}{1198}a^{5}-\frac{19877}{4792}a^{4}+\frac{20853}{2396}a^{3}-\frac{10051}{2396}a^{2}+\frac{5914}{4193}a-\frac{4177}{16772}$, $\frac{75}{2396}a^{14}+\frac{673}{8386}a^{12}+\frac{1051}{1198}a^{10}+\frac{1118}{599}a^{8}+\frac{25169}{16772}a^{6}+\frac{1757}{1198}a^{4}+\frac{695}{1198}a^{2}-\frac{1410}{4193}$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 11851.740666 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 11851.740666 \cdot 2}{2\cdot\sqrt{1622647227216566419456}}\cr\approx \mathstrut & 0.71467572476 \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^16 + 4*x^14 + 32*x^12 + 100*x^10 + 141*x^8 + 120*x^6 + 92*x^4 + 32*x^2 + 4)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^16 + 4*x^14 + 32*x^12 + 100*x^10 + 141*x^8 + 120*x^6 + 92*x^4 + 32*x^2 + 4, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^16 + 4*x^14 + 32*x^12 + 100*x^10 + 141*x^8 + 120*x^6 + 92*x^4 + 32*x^2 + 4);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^16 + 4*x^14 + 32*x^12 + 100*x^10 + 141*x^8 + 120*x^6 + 92*x^4 + 32*x^2 + 4);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$\SD_{16}$ (as 16T12):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 16
The 7 conjugacy class representatives for $QD_{16}$
Character table for $QD_{16}$

Intermediate fields

\(\Q(\sqrt{-14}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-7}) \), \(\Q(\sqrt{2}, \sqrt{-7})\), 4.2.1792.1 x2, 4.0.1568.1 x2, 8.0.157351936.3, 8.2.5754585088.3 x4

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 8 sibling: 8.2.5754585088.3
Minimal sibling: 8.2.5754585088.3

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.8.0.1}{8} }^{2}$ ${\href{/padicField/5.8.0.1}{8} }^{2}$ R ${\href{/padicField/11.4.0.1}{4} }^{4}$ ${\href{/padicField/13.8.0.1}{8} }^{2}$ ${\href{/padicField/17.2.0.1}{2} }^{8}$ ${\href{/padicField/19.8.0.1}{8} }^{2}$ ${\href{/padicField/23.4.0.1}{4} }^{4}$ ${\href{/padicField/29.4.0.1}{4} }^{4}$ ${\href{/padicField/31.2.0.1}{2} }^{8}$ ${\href{/padicField/37.4.0.1}{4} }^{4}$ ${\href{/padicField/41.2.0.1}{2} }^{8}$ ${\href{/padicField/43.4.0.1}{4} }^{4}$ ${\href{/padicField/47.2.0.1}{2} }^{8}$ ${\href{/padicField/53.4.0.1}{4} }^{4}$ ${\href{/padicField/59.8.0.1}{8} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.8.24.12$x^{8} + 4 x^{6} + 10 x^{4} + 4 x^{2} + 8 x + 14$$8$$1$$24$$Q_8$$[2, 3, 4]$
2.8.24.12$x^{8} + 4 x^{6} + 10 x^{4} + 4 x^{2} + 8 x + 14$$8$$1$$24$$Q_8$$[2, 3, 4]$
\(7\) Copy content Toggle raw display 7.4.2.1$x^{4} + 12 x^{3} + 56 x^{2} + 120 x + 268$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 12 x^{3} + 56 x^{2} + 120 x + 268$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 12 x^{3} + 56 x^{2} + 120 x + 268$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 12 x^{3} + 56 x^{2} + 120 x + 268$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$