Normalized defining polynomial
\( x^{16} + 8 x^{14} - 16 x^{13} + 32 x^{12} - 48 x^{11} + 76 x^{10} - 8 x^{9} + 272 x^{8} + 152 x^{7} + 312 x^{6} + 160 x^{5} + 212 x^{4} + 40 x^{3} + 52 x^{2} + 1 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1622647227216566419456=2^{48}\cdot 7^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $21.17$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{7} a^{12} + \frac{2}{7} a^{11} + \frac{1}{7} a^{10} + \frac{2}{7} a^{9} - \frac{1}{7} a^{8} - \frac{2}{7} a^{6} - \frac{2}{7} a^{5} - \frac{1}{7} a^{2} - \frac{2}{7} a + \frac{2}{7}$, $\frac{1}{203} a^{13} - \frac{6}{203} a^{12} + \frac{90}{203} a^{11} + \frac{1}{203} a^{10} + \frac{67}{203} a^{9} + \frac{36}{203} a^{8} + \frac{5}{203} a^{7} - \frac{7}{29} a^{6} + \frac{44}{203} a^{5} - \frac{4}{29} a^{4} + \frac{83}{203} a^{3} - \frac{64}{203} a^{2} - \frac{31}{203} a + \frac{40}{203}$, $\frac{1}{429751} a^{14} - \frac{149}{429751} a^{13} - \frac{10884}{429751} a^{12} + \frac{23955}{61393} a^{11} + \frac{116185}{429751} a^{10} + \frac{114778}{429751} a^{9} - \frac{146779}{429751} a^{8} + \frac{112104}{429751} a^{7} - \frac{61041}{429751} a^{6} + \frac{130415}{429751} a^{5} - \frac{15401}{429751} a^{4} - \frac{117899}{429751} a^{3} - \frac{72021}{429751} a^{2} - \frac{151721}{429751} a + \frac{128550}{429751}$, $\frac{1}{1483070701} a^{15} + \frac{1042}{1483070701} a^{14} - \frac{1416203}{1483070701} a^{13} - \frac{43553052}{1483070701} a^{12} + \frac{69798646}{1483070701} a^{11} - \frac{12702321}{30266749} a^{10} - \frac{2328394}{87239453} a^{9} - \frac{94033279}{211867243} a^{8} + \frac{430719729}{1483070701} a^{7} + \frac{105961428}{1483070701} a^{6} + \frac{419482943}{1483070701} a^{5} - \frac{410948}{1483070701} a^{4} - \frac{455128855}{1483070701} a^{3} + \frac{611372962}{1483070701} a^{2} - \frac{350322806}{1483070701} a - \frac{688656373}{1483070701}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 8142.79016471 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times D_8):C_2$ (as 16T126):
| A solvable group of order 64 |
| The 19 conjugacy class representatives for $(C_2\times D_8):C_2$ |
| Character table for $(C_2\times D_8):C_2$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), 4.2.1792.1, 4.2.50176.1, 4.0.7168.1, 8.2.1438646272.4, 8.2.359661568.2, 8.0.10070523904.8 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $7$ | 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |