Normalized defining polynomial
\( x^{16} - 4 x^{15} + 44 x^{14} - 154 x^{13} + 1235 x^{12} - 3092 x^{11} + 21768 x^{10} - 41224 x^{9} + 273604 x^{8} - 325092 x^{7} + 2607307 x^{6} - 1108314 x^{5} + 17713171 x^{4} + 937078 x^{3} + 72393140 x^{2} + 11851192 x + 132381829 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(16164273696996018327577600000000=2^{16}\cdot 5^{8}\cdot 29^{6}\cdot 101^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $89.23$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 29, 101$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{29} a^{12} - \frac{3}{29} a^{11} + \frac{8}{29} a^{10} + \frac{2}{29} a^{9} - \frac{9}{29} a^{8} - \frac{9}{29} a^{7} - \frac{12}{29} a^{6} - \frac{14}{29} a^{5} - \frac{8}{29} a^{4} + \frac{13}{29} a^{3} - \frac{13}{29} a^{2} - \frac{11}{29} a - \frac{8}{29}$, $\frac{1}{29} a^{13} - \frac{1}{29} a^{11} - \frac{3}{29} a^{10} - \frac{3}{29} a^{9} - \frac{7}{29} a^{8} - \frac{10}{29} a^{7} + \frac{8}{29} a^{6} + \frac{8}{29} a^{5} - \frac{11}{29} a^{4} - \frac{3}{29} a^{3} + \frac{8}{29} a^{2} - \frac{12}{29} a + \frac{5}{29}$, $\frac{1}{29} a^{14} - \frac{6}{29} a^{11} + \frac{5}{29} a^{10} - \frac{5}{29} a^{9} + \frac{10}{29} a^{8} - \frac{1}{29} a^{7} - \frac{4}{29} a^{6} + \frac{4}{29} a^{5} - \frac{11}{29} a^{4} - \frac{8}{29} a^{3} + \frac{4}{29} a^{2} - \frac{6}{29} a - \frac{8}{29}$, $\frac{1}{3173977541533152535450152212276393414316073} a^{15} + \frac{31416876359723410724821509815336535022051}{3173977541533152535450152212276393414316073} a^{14} - \frac{26291462738575869759609534572392544225266}{3173977541533152535450152212276393414316073} a^{13} - \frac{26918698842319314072690778436651089256565}{3173977541533152535450152212276393414316073} a^{12} + \frac{1325432615210950462867844099597423645213838}{3173977541533152535450152212276393414316073} a^{11} - \frac{1238859535449226826635872020503675380363305}{3173977541533152535450152212276393414316073} a^{10} - \frac{104617751104460711840618499717721253156484}{288543412866650230495468382934217583119643} a^{9} + \frac{432895157266766358700644435569668450949082}{3173977541533152535450152212276393414316073} a^{8} - \frac{1431481051456731561681747111567894701249655}{3173977541533152535450152212276393414316073} a^{7} - \frac{584161325510240812714068265251782228017438}{3173977541533152535450152212276393414316073} a^{6} + \frac{1217368167215737101082898574601252640889040}{3173977541533152535450152212276393414316073} a^{5} + \frac{1320412844398024488088195313421450339289618}{3173977541533152535450152212276393414316073} a^{4} + \frac{833358858126040505655794723465360450596109}{3173977541533152535450152212276393414316073} a^{3} - \frac{1506317946701162135444009530473776724596359}{3173977541533152535450152212276393414316073} a^{2} + \frac{3362599190077230690555767400671355284616}{9949772857470697603292013204628192521367} a + \frac{406018985231134181752991028187309512642477}{3173977541533152535450152212276393414316073}$
Class group and class number
$C_{2}\times C_{96}$, which has order $192$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3199036.50724 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2.C_2^5.C_2$ (as 16T493):
| A solvable group of order 256 |
| The 34 conjugacy class representatives for $C_2^2.C_2^5.C_2$ |
| Character table for $C_2^2.C_2^5.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.0.1171600.6, 4.0.40400.1, 4.4.725.1, 8.0.1372646560000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $29$ | 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.8.6.2 | $x^{8} + 145 x^{4} + 7569$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 101 | Data not computed | ||||||