Normalized defining polynomial
\( x^{16} - x^{15} - 4 x^{14} + 2 x^{13} - 24 x^{12} - 193 x^{11} + 495 x^{10} + 540 x^{9} - 488 x^{8} + 3780 x^{7} + 24255 x^{6} - 66199 x^{5} - 57624 x^{4} + 33614 x^{3} - 470596 x^{2} - 823543 x + 5764801 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1607166017050789863525390625=5^{12}\cdot 37^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $50.16$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(185=5\cdot 37\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{185}(1,·)$, $\chi_{185}(68,·)$, $\chi_{185}(6,·)$, $\chi_{185}(73,·)$, $\chi_{185}(142,·)$, $\chi_{185}(147,·)$, $\chi_{185}(149,·)$, $\chi_{185}(154,·)$, $\chi_{185}(31,·)$, $\chi_{185}(36,·)$, $\chi_{185}(38,·)$, $\chi_{185}(43,·)$, $\chi_{185}(112,·)$, $\chi_{185}(179,·)$, $\chi_{185}(117,·)$, $\chi_{185}(184,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2} a^{5} - \frac{1}{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{3}$, $\frac{1}{14} a^{9} - \frac{1}{14} a^{8} + \frac{3}{14} a^{7} + \frac{1}{7} a^{6} - \frac{3}{14} a^{5} + \frac{3}{14} a^{4} + \frac{5}{14} a^{3} + \frac{1}{14} a^{2} + \frac{1}{7} a - \frac{1}{2}$, $\frac{1}{196} a^{10} + \frac{3}{98} a^{9} + \frac{19}{98} a^{8} - \frac{13}{98} a^{7} - \frac{5}{98} a^{6} - \frac{9}{98} a^{5} + \frac{13}{98} a^{4} - \frac{31}{98} a^{3} + \frac{29}{98} a^{2} + \frac{5}{14} a + \frac{1}{4}$, $\frac{1}{1372} a^{11} - \frac{1}{1372} a^{10} - \frac{1}{343} a^{9} + \frac{1}{686} a^{8} - \frac{6}{343} a^{7} + \frac{75}{686} a^{6} + \frac{38}{343} a^{5} + \frac{135}{343} a^{4} + \frac{99}{686} a^{3} - \frac{12}{49} a^{2} + \frac{5}{28} a - \frac{1}{4}$, $\frac{1}{28812} a^{12} - \frac{2}{7203} a^{11} + \frac{1}{9604} a^{10} + \frac{5}{4802} a^{9} - \frac{19}{14406} a^{8} + \frac{198}{2401} a^{7} - \frac{739}{7203} a^{6} + \frac{713}{4802} a^{5} + \frac{5069}{14406} a^{4} + \frac{57}{686} a^{3} - \frac{15}{196} a^{2} + \frac{10}{21} a - \frac{5}{12}$, $\frac{1}{129279444} a^{13} + \frac{205}{43093148} a^{12} - \frac{10249}{32319861} a^{11} + \frac{6319}{21546574} a^{10} + \frac{40678}{32319861} a^{9} - \frac{6801355}{32319861} a^{8} + \frac{2719471}{64639722} a^{7} - \frac{4597451}{32319861} a^{6} - \frac{5064755}{32319861} a^{5} + \frac{1777388}{4617123} a^{4} - \frac{98747}{879452} a^{3} - \frac{163943}{376908} a^{2} + \frac{1625}{4487} a + \frac{907}{3846}$, $\frac{1}{904956108} a^{14} - \frac{1}{904956108} a^{13} - \frac{11519}{904956108} a^{12} + \frac{86159}{301652036} a^{11} - \frac{50231}{226239027} a^{10} - \frac{14060377}{452478054} a^{9} + \frac{13940233}{452478054} a^{8} + \frac{15742316}{226239027} a^{7} - \frac{52455014}{226239027} a^{6} + \frac{6170404}{32319861} a^{5} + \frac{753283}{6156164} a^{4} + \frac{360133}{2638356} a^{3} - \frac{4861}{376908} a^{2} - \frac{3593}{7692} a - \frac{269}{641}$, $\frac{1}{12669385512} a^{15} + \frac{1}{2111564252} a^{14} + \frac{19}{6334692756} a^{13} - \frac{92819}{6334692756} a^{12} - \frac{290441}{2111564252} a^{11} - \frac{24439699}{12669385512} a^{10} - \frac{38829823}{3167346378} a^{9} - \frac{85798017}{1055782126} a^{8} + \frac{365610359}{1583673189} a^{7} - \frac{7522108}{75413009} a^{6} - \frac{1473187}{86186296} a^{5} - \frac{264017}{6156164} a^{4} + \frac{5247}{125636} a^{3} - \frac{93743}{376908} a^{2} - \frac{7649}{53844} a + \frac{5021}{15384}$
Class group and class number
$C_{5}\times C_{5}$, which has order $25$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{12045}{4223128504} a^{15} - \frac{2409}{2111564252} a^{14} - \frac{26499}{2111564252} a^{13} - \frac{64693}{1055782126} a^{12} + \frac{363759}{2111564252} a^{11} + \frac{2493315}{4223128504} a^{10} + \frac{31317}{1055782126} a^{9} + \frac{1982607}{1055782126} a^{8} + \frac{4841232}{527891063} a^{7} - \frac{257763}{10773287} a^{6} - \frac{869649}{12312328} a^{5} - \frac{12045}{879452} a^{4} - \frac{31317}{125636} a^{3} - \frac{62799}{62818} a^{2} + \frac{7227}{2564} a + \frac{16863}{5128} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1484842.58736 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4^2$ |
| Character table for $C_4^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 37 | Data not computed | ||||||