Normalized defining polynomial
\( x^{16} + 11324 x^{14} + 46469406 x^{12} + 80560918772 x^{10} + 74842201814254 x^{8} + 38845570175747892 x^{6} + 10584531382898601450 x^{4} + 1342530927602222399244 x^{2} + 86816405953497148304733 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(160390192004889035274309827110029156806685344432046320325230592=2^{48}\cdot 3^{11}\cdot 7^{5}\cdot 294337^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $7723.67$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 294337$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2}$, $\frac{1}{6} a^{9} + \frac{1}{3} a^{7} + \frac{1}{3} a^{3} + \frac{1}{6} a$, $\frac{1}{18} a^{10} + \frac{1}{9} a^{8} - \frac{1}{3} a^{6} + \frac{4}{9} a^{4} + \frac{7}{18} a^{2}$, $\frac{1}{54} a^{11} + \frac{1}{27} a^{9} + \frac{2}{9} a^{7} + \frac{4}{27} a^{5} + \frac{7}{54} a^{3} + \frac{1}{3} a$, $\frac{1}{3402} a^{12} - \frac{8}{1701} a^{10} - \frac{130}{567} a^{8} + \frac{328}{1701} a^{6} - \frac{197}{486} a^{4} - \frac{10}{21} a^{2}$, $\frac{1}{37425402} a^{13} + \frac{15149}{1969758} a^{11} - \frac{210361}{6237567} a^{9} - \frac{4678556}{18712701} a^{7} + \frac{1470385}{5346486} a^{5} - \frac{220525}{1386126} a^{3} + \frac{1978}{11001} a$, $\frac{1}{14265746346802424299289327558617575695435789969050182089031707208109626} a^{14} + \frac{40258743545636425415194364437992251525766086202803522135752149887}{750828755094864436804701450453556615549252103634220109949037221479454} a^{12} + \frac{33738759474616101600143656204645644928888784537741311228459950358664}{2377624391133737383214887926436262615905964994841697014838617868018271} a^{10} + \frac{30387668142747245498926126584511614622264090332903422035103371161683}{331761542948893588355565757177152923149669534163957723000737376932782} a^{8} - \frac{665673194865646040717077338391565230241746637335189934635295824285691}{2037963763828917757041332508373939385062255709864311727004529601158518} a^{6} - \frac{251562414480379218583165571308310771084175889520210403389131979598389}{528360975807497196269975094763613914645769998853710447741915081781838} a^{4} + \frac{1292997161800647959128287188192540005809335308709424731592129472118}{4193341077837279335475992815584237417823571419473892442396151442713} a^{2} + \frac{317561558516406712589572777032495016080645605357538799721231}{636889177438229293725783843541258900944992153363728146290058}$, $\frac{1}{2439442625303214555178475012523605443919520084707581137224421932586746046} a^{15} - \frac{908499105615839672652851640827641313516316606321137784144619117}{128391717121221818693603948027558181258922109721451638801285364872986634} a^{13} - \frac{214432328122989037099199769363794101314558385161168954952873182024647}{813147541767738185059491670841201814639840028235860379074807310862248682} a^{11} - \frac{1950852791273495587905802955692779817804438783155574337197670115491273}{28365611922130401804400872238646574929296745171018385316563045727752861} a^{9} - \frac{154107186986601310871532195238870750483091892383535651443921617244560565}{348491803614744936454067858931943634845645726386797305317774561798106578} a^{7} + \frac{15302792575871744153320845057612617302250883109549508450246681690680759}{90349726863082020562165741204577979404426669803984486563867478984694298} a^{5} - \frac{672395692000617569400456003865335445379354961499434135235120511175989}{1434122648620349532732789542929809196895661425460071215299483793407846} a^{3} + \frac{3936208348742414834214831747539520664371710433381724419260306962}{10509626761496940690416022094196083753943788018731560006005392087} a$
Class group and class number
$C_{2}\times C_{8}$, which has order $16$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{107850030165987851047966411}{9362598812129209694381801751542114155718624121} a^{14} - \frac{2296191305874258822041332967005}{18725197624258419388763603503084228311437248242} a^{12} - \frac{1408169924106077786647603038031327}{3120866270709736564793933917180704718572874707} a^{10} - \frac{5734864609881254627147248277936168078}{9362598812129209694381801751542114155718624121} a^{8} - \frac{550445961729007477175410697378955162079}{1337514116018458527768828821648873450816946303} a^{6} - \frac{81958295729338438991158730567451588328697}{693525837935497014398651981595712159682861046} a^{4} - \frac{37635703595521920355191533614572094971823}{5504173316948389003163904615838985394308421} a^{2} + \frac{8733626417625555926540592666894397893373}{29122610142584068799809019131423203144489} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4036710027520000000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 29 conjugacy class representatives for t16n1022 |
| Character table for t16n1022 is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 4.0.42384528.1, 8.0.2842620092391385389662208.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Arithmetically equvalently siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $16$ | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | $16$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.4.3.1 | $x^{4} + 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.3.1 | $x^{4} + 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 3.4.3.1 | $x^{4} + 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| $7$ | 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 294337 | Data not computed | ||||||