Properties

Label 16.0.16039019200...0592.1
Degree $16$
Signature $[0, 8]$
Discriminant $2^{48}\cdot 3^{11}\cdot 7^{5}\cdot 294337^{7}$
Root discriminant $7723.67$
Ramified primes $2, 3, 7, 294337$
Class number $16$ (GRH)
Class group $[2, 8]$ (GRH)
Galois group 16T1022

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1405380235130639218042893, 0, 9738852838043305012092, 0, 31250279689754897394, 0, 50513141676288564, 0, 41013254839662, 0, 22063918452, 0, 16284406, 0, 2764, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 + 2764*x^14 + 16284406*x^12 + 22063918452*x^10 + 41013254839662*x^8 + 50513141676288564*x^6 + 31250279689754897394*x^4 + 9738852838043305012092*x^2 + 1405380235130639218042893)
 
gp: K = bnfinit(x^16 + 2764*x^14 + 16284406*x^12 + 22063918452*x^10 + 41013254839662*x^8 + 50513141676288564*x^6 + 31250279689754897394*x^4 + 9738852838043305012092*x^2 + 1405380235130639218042893, 1)
 

Normalized defining polynomial

\( x^{16} + 2764 x^{14} + 16284406 x^{12} + 22063918452 x^{10} + 41013254839662 x^{8} + 50513141676288564 x^{6} + 31250279689754897394 x^{4} + 9738852838043305012092 x^{2} + 1405380235130639218042893 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(160390192004889035274309827110029156806685344432046320325230592=2^{48}\cdot 3^{11}\cdot 7^{5}\cdot 294337^{7}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $7723.67$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 7, 294337$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{42} a^{8} - \frac{4}{21} a^{6} - \frac{1}{21} a^{4} - \frac{2}{7} a^{2} - \frac{1}{2}$, $\frac{1}{294} a^{9} + \frac{59}{147} a^{7} + \frac{20}{147} a^{5} - \frac{16}{49} a^{3} + \frac{1}{14} a$, $\frac{1}{14406} a^{10} + \frac{10}{7203} a^{8} - \frac{617}{7203} a^{6} - \frac{1567}{7203} a^{4} + \frac{85}{686} a^{2}$, $\frac{1}{302526} a^{11} - \frac{323}{302526} a^{9} + \frac{43973}{151263} a^{7} - \frac{7339}{16807} a^{5} - \frac{5207}{14406} a^{3} - \frac{1}{14} a$, $\frac{1}{14823774} a^{12} - \frac{323}{14823774} a^{10} - \frac{6448}{7411887} a^{8} + \frac{1070438}{2470629} a^{6} - \frac{82039}{705894} a^{4} + \frac{111}{686} a^{2}$, $\frac{1}{140188430718} a^{13} - \frac{9241}{140188430718} a^{11} - \frac{15860594}{70094215359} a^{9} + \frac{28507536884}{70094215359} a^{7} - \frac{1020011379}{2225213186} a^{5} - \frac{8256809}{19462506} a^{3} + \frac{3}{9457} a$, $\frac{1}{732221615765497508578793083634078393433983429934475117232831981298} a^{14} + \frac{3230248599451096006121440999911055975136094951824447083351}{732221615765497508578793083634078393433983429934475117232831981298} a^{12} - \frac{11782890405390436846162428046886576117370859807897038533370271}{366110807882748754289396541817039196716991714967237558616415990649} a^{10} + \frac{906677035237293772448044745091205670890729022096564917803172745}{122036935960916251429798847272346398905663904989079186205471996883} a^{8} + \frac{8115274039319744287542028512108834260503267075162720922008460327}{34867695988833214694228242077813256830189687139736910344420570538} a^{6} + \frac{5187355277150557447870119169959620232527924283298238908476755}{11295010038494724552714040193655088056426850385402303318568374} a^{4} + \frac{5853206215439065421962933962233953152049474620809577408878}{49395087631901127781548280730270064386706342793304533463127} a^{2} + \frac{5139133555271208561982034836779301582584107075991604}{35531458633673165672584811546045555562777414126745213}$, $\frac{1}{35878859172509377920360861098069841278265188066789280744408767083602} a^{15} - \frac{48440827773712777146864084224551901103409664794923958378}{17939429586254688960180430549034920639132594033394640372204383541801} a^{13} + \frac{7180229875660464047471722191043084267684151258755423029248245}{35878859172509377920360861098069841278265188066789280744408767083602} a^{11} + \frac{19559680849156660911109614865061209595730855937200593858680782593}{11959619724169792640120287032689947092755062688929760248136255694534} a^{9} + \frac{269676475039461570967559186195198855114272591899471449838778983115}{1708517103452827520017183861812849584679294669847108606876607956362} a^{7} + \frac{105017480202175247416862515078429559355743524973624552157200959}{276727745943120751541493984744549657382457834442356431304925163} a^{5} - \frac{420922511102812103648209693502186171706832216592545607186867}{1613572862642103507530577170522155436632407197914614759795482} a^{3} - \frac{117366463998173476989287316536170210724491868720404411323}{672042008597294255531269125581905637914372010793258958682} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{8}$, which has order $16$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( \frac{213413765655731547708433}{553953008116445197341562957702911421303577577} a^{14} + \frac{570432228564634040613308863}{1107906016232890394683125915405822842607155154} a^{12} + \frac{2853623801736137079398279614163}{553953008116445197341562957702911421303577577} a^{10} + \frac{231458505551358170825276142399574}{553953008116445197341562957702911421303577577} a^{8} + \frac{252213434671253475383297007127844203}{26378714672211676063883950366805305776360837} a^{6} + \frac{323234672372125929394248160132882555}{153811747359834845853550731001780208608518} a^{4} - \frac{35686601084412117475390863622582799}{10676922626671862130608824864763307553} a^{2} - \frac{162682693900006575876234808987688571}{217896380136160451645078058464557297} \) (order $6$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 4036710027520000000000000 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1022:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 512
The 29 conjugacy class representatives for t16n1022
Character table for t16n1022 is not computed

Intermediate fields

\(\Q(\sqrt{-3}) \), 4.0.42384528.1, 8.0.2842620092391385389662208.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed
Arithmetically equvalently siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R $16$ R ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ $16$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$3$3.2.1.2$x^{2} + 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.2.1.2$x^{2} + 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.4.3.1$x^{4} + 3$$4$$1$$3$$D_{4}$$[\ ]_{4}^{2}$
3.8.6.2$x^{8} + 4 x^{7} + 14 x^{6} + 28 x^{5} + 43 x^{4} + 44 x^{3} + 110 x^{2} + 92 x + 22$$4$$2$$6$$D_4$$[\ ]_{4}^{2}$
$7$$\Q_{7}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{7}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{7}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{7}$$x + 2$$1$$1$$0$Trivial$[\ ]$
7.2.1.1$x^{2} - 7$$2$$1$$1$$C_2$$[\ ]_{2}$
7.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
294337Data not computed