Normalized defining polynomial
\( x^{16} - 8 x^{15} + 161 x^{14} - 976 x^{13} + 10885 x^{12} - 32407 x^{11} + 364196 x^{10} - 237490 x^{9} + 11234971 x^{8} - 9476184 x^{7} + 359119764 x^{6} - 322810806 x^{5} + 4917795919 x^{4} + 8350714193 x^{3} + 12836643115 x^{2} + 14829382806 x + 321671395988 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1602564097506337056774549158159344838497=47^{8}\cdot 97^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $282.03$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $47, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{14} - \frac{1}{2} a^{11} + \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} + \frac{1}{4} a^{7} - \frac{1}{2} a^{6} + \frac{1}{4} a^{5} + \frac{1}{4} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{250689603171014137573385213854146630193976991198331145812242164433228202133096816} a^{15} + \frac{23975176092547893819149108178638299388850031210874920912839571962669703552199337}{250689603171014137573385213854146630193976991198331145812242164433228202133096816} a^{14} + \frac{28264564359241053786038166990846527600902149727920405695342455795578287335583933}{125344801585507068786692606927073315096988495599165572906121082216614101066548408} a^{13} - \frac{26487858824578554427733613986591543595629594177880511525622250764691960967784123}{125344801585507068786692606927073315096988495599165572906121082216614101066548408} a^{12} - \frac{45775593263398636115493083761618900227779543919065477680347088439795690896500753}{250689603171014137573385213854146630193976991198331145812242164433228202133096816} a^{11} - \frac{1326814777776884607393383528652599006578658766133100324478077132151855131224609}{31336200396376767196673151731768328774247123899791393226530270554153525266637102} a^{10} + \frac{31099412325568213742974424384576586586620869679474459430809550322092613375888255}{62672400792753534393346303463536657548494247799582786453060541108307050533274204} a^{9} - \frac{33443899237866095650086086559694458125044599545891034486301756996603371683764019}{125344801585507068786692606927073315096988495599165572906121082216614101066548408} a^{8} - \frac{22550214995686888707777591077823639579902346860825292617410820309655762526925803}{250689603171014137573385213854146630193976991198331145812242164433228202133096816} a^{7} + \frac{54190528743746877311150799326697253839895572998893509046279192418792649984479037}{250689603171014137573385213854146630193976991198331145812242164433228202133096816} a^{6} + \frac{95916107642670116401078209965344823093356423951625607094675871704914650212880225}{250689603171014137573385213854146630193976991198331145812242164433228202133096816} a^{5} + \frac{66488683417347927125970792325438261304786221790251800250283268123650486794919595}{250689603171014137573385213854146630193976991198331145812242164433228202133096816} a^{4} + \frac{7560934315074789872531363691325153444700467633114961837322487933016264944805813}{125344801585507068786692606927073315096988495599165572906121082216614101066548408} a^{3} - \frac{78695110744183018516920697925111681324522582203587619201779003141944705454097013}{250689603171014137573385213854146630193976991198331145812242164433228202133096816} a^{2} - \frac{31685456669610859543820578106407619540059302766825397126710101991366971115957237}{125344801585507068786692606927073315096988495599165572906121082216614101066548408} a + \frac{677750824505674509417328482687396618229747713576538072942175795450776453368239}{62672400792753534393346303463536657548494247799582786453060541108307050533274204}$
Class group and class number
$C_{4}\times C_{20}$, which has order $80$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 189640310271 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4.D_4:C_4$ (as 16T260):
| A solvable group of order 128 |
| The 32 conjugacy class representatives for $C_4.D_4:C_4$ |
| Character table for $C_4.D_4:C_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-47}) \), 4.0.214273.1, 8.0.41903481092618017.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ | $16$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $47$ | 47.8.4.1 | $x^{8} + 172302 x^{4} - 103823 x^{2} + 7421994801$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 47.8.4.1 | $x^{8} + 172302 x^{4} - 103823 x^{2} + 7421994801$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $97$ | 97.4.3.3 | $x^{4} + 485$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 97.4.3.4 | $x^{4} + 12125$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 97.8.7.2 | $x^{8} - 2425$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |