Normalized defining polynomial
\( x^{16} + 449 x^{14} + 78062 x^{12} + 6796991 x^{10} + 316668951 x^{8} + 7779430815 x^{6} + 92746144390 x^{4} + 429837223525 x^{2} + 140059320025 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(159112389191659073629133440000000000=2^{16}\cdot 5^{10}\cdot 29^{8}\cdot 89^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $158.53$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 29, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{29} a^{8} + \frac{14}{29} a^{6} - \frac{6}{29} a^{4}$, $\frac{1}{29} a^{9} + \frac{14}{29} a^{7} - \frac{6}{29} a^{5}$, $\frac{1}{87} a^{10} - \frac{1}{87} a^{8} - \frac{13}{87} a^{6} - \frac{26}{87} a^{4} - \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{87} a^{11} - \frac{1}{87} a^{9} - \frac{13}{87} a^{7} - \frac{26}{87} a^{5} - \frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{3368205} a^{12} - \frac{1384}{374245} a^{10} + \frac{52252}{3368205} a^{8} + \frac{1666}{12905} a^{6} - \frac{4241}{116145} a^{4} - \frac{1}{9} a^{2} + \frac{1}{9}$, $\frac{1}{3368205} a^{13} - \frac{1384}{374245} a^{11} + \frac{52252}{3368205} a^{9} + \frac{1666}{12905} a^{7} - \frac{4241}{116145} a^{5} - \frac{1}{9} a^{3} + \frac{1}{9} a$, $\frac{1}{872657545799647518277107973275} a^{14} - \frac{5161405068812813375831}{872657545799647518277107973275} a^{12} + \frac{143240917052437633664185597}{872657545799647518277107973275} a^{10} + \frac{72444100926534371390895944}{30091639510332673044038205975} a^{8} + \frac{2533695202190599717653251089}{30091639510332673044038205975} a^{6} - \frac{31502465704532334850934182}{207528548347121883062332455} a^{4} + \frac{180119563183704939217862}{777260480700831022705365} a^{2} + \frac{3164049894377542029862}{16081251324844779780111}$, $\frac{1}{872657545799647518277107973275} a^{15} - \frac{5161405068812813375831}{872657545799647518277107973275} a^{13} + \frac{143240917052437633664185597}{872657545799647518277107973275} a^{11} + \frac{72444100926534371390895944}{30091639510332673044038205975} a^{9} + \frac{2533695202190599717653251089}{30091639510332673044038205975} a^{7} - \frac{31502465704532334850934182}{207528548347121883062332455} a^{5} + \frac{180119563183704939217862}{777260480700831022705365} a^{3} + \frac{3164049894377542029862}{16081251324844779780111} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{4}\times C_{159540}$, which has order $5105280$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 13345.9350553 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4.C_2^3.C_2$ (as 16T516):
| A solvable group of order 256 |
| The 34 conjugacy class representatives for $C_2^4.C_2^3.C_2$ |
| Character table for $C_2^4.C_2^3.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.64525.2, 4.4.725.1, 4.4.2225.1, 8.8.4163475625.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.8.3 | $x^{8} + 2 x^{7} + 2 x^{6} + 16$ | $2$ | $4$ | $8$ | $C_2^3: C_4$ | $[2, 2, 2]^{4}$ |
| 2.8.8.3 | $x^{8} + 2 x^{7} + 2 x^{6} + 16$ | $2$ | $4$ | $8$ | $C_2^3: C_4$ | $[2, 2, 2]^{4}$ | |
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $29$ | 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.8.6.1 | $x^{8} - 203 x^{4} + 68121$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $89$ | 89.4.0.1 | $x^{4} - x + 27$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 89.4.0.1 | $x^{4} - x + 27$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 89.8.6.2 | $x^{8} + 979 x^{4} + 285156$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |