Normalized defining polynomial
\( x^{16} - 5 x^{15} + 39 x^{14} - 206 x^{13} + 786 x^{12} - 2928 x^{11} + 9477 x^{10} - 24016 x^{9} + 52719 x^{8} - 106947 x^{7} + 186225 x^{6} - 291930 x^{5} + 417254 x^{4} - 465259 x^{3} + 404877 x^{2} - 251193 x + 77917 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(158134644731459542671806121=3^{12}\cdot 29^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $43.39$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{7} a^{6} - \frac{3}{7} a^{5} + \frac{2}{7} a^{4} + \frac{1}{7} a^{3} - \frac{3}{7} a^{2} + \frac{2}{7} a$, $\frac{1}{7} a^{7} - \frac{1}{7} a$, $\frac{1}{35} a^{8} + \frac{1}{35} a^{7} + \frac{1}{35} a^{6} - \frac{17}{35} a^{5} + \frac{2}{35} a^{4} - \frac{13}{35} a^{3} - \frac{11}{35} a^{2} - \frac{6}{35} a - \frac{1}{5}$, $\frac{1}{35} a^{9} + \frac{2}{35} a^{6} - \frac{6}{35} a^{5} - \frac{2}{7} a^{4} - \frac{13}{35} a^{3} + \frac{3}{7} a^{2} + \frac{4}{35} a + \frac{1}{5}$, $\frac{1}{35} a^{10} + \frac{2}{35} a^{7} - \frac{1}{35} a^{6} + \frac{2}{7} a^{5} - \frac{3}{35} a^{4} - \frac{3}{7} a^{3} - \frac{11}{35} a^{2} + \frac{17}{35} a$, $\frac{1}{245} a^{11} + \frac{1}{245} a^{10} - \frac{1}{245} a^{9} - \frac{3}{245} a^{8} + \frac{6}{245} a^{7} + \frac{12}{245} a^{6} - \frac{72}{245} a^{5} - \frac{103}{245} a^{4} + \frac{27}{245} a^{3} - \frac{19}{245} a^{2} + \frac{88}{245} a + \frac{9}{35}$, $\frac{1}{490} a^{12} - \frac{1}{490} a^{11} - \frac{3}{490} a^{10} - \frac{1}{490} a^{9} - \frac{1}{245} a^{8} - \frac{1}{35} a^{7} - \frac{1}{98} a^{6} + \frac{209}{490} a^{5} - \frac{15}{98} a^{4} + \frac{107}{245} a^{3} - \frac{1}{14} a^{2} - \frac{32}{245} a + \frac{31}{70}$, $\frac{1}{3430} a^{13} + \frac{3}{3430} a^{12} - \frac{1}{490} a^{11} - \frac{13}{3430} a^{10} - \frac{24}{1715} a^{9} + \frac{2}{343} a^{8} + \frac{121}{3430} a^{7} + \frac{31}{490} a^{6} + \frac{1069}{3430} a^{5} - \frac{211}{1715} a^{4} + \frac{1381}{3430} a^{3} - \frac{18}{1715} a^{2} + \frac{521}{3430} a - \frac{24}{49}$, $\frac{1}{120050} a^{14} - \frac{1}{17150} a^{13} - \frac{3}{12005} a^{12} + \frac{19}{12005} a^{11} - \frac{1269}{120050} a^{10} - \frac{29}{4802} a^{9} - \frac{611}{120050} a^{8} - \frac{5739}{120050} a^{7} + \frac{368}{12005} a^{6} + \frac{1993}{24010} a^{5} - \frac{3796}{12005} a^{4} + \frac{15}{343} a^{3} - \frac{11498}{60025} a^{2} + \frac{22434}{60025} a + \frac{1917}{17150}$, $\frac{1}{114885699384802229450} a^{15} + \frac{307670574342689}{114885699384802229450} a^{14} + \frac{12368646625888803}{114885699384802229450} a^{13} - \frac{10144358603436371}{22977139876960445890} a^{12} + \frac{49493463562973498}{57442849692401114725} a^{11} + \frac{5417553770172814}{8206121384628730675} a^{10} - \frac{978259287453761811}{114885699384802229450} a^{9} + \frac{249109377055958903}{22977139876960445890} a^{8} + \frac{1557619566623751711}{114885699384802229450} a^{7} - \frac{256112856841341873}{11488569938480222945} a^{6} + \frac{111489083595259269}{656489710770298454} a^{5} - \frac{522469086272160862}{2297713987696044589} a^{4} - \frac{24667187771492790791}{114885699384802229450} a^{3} - \frac{1669921532411300552}{8206121384628730675} a^{2} + \frac{6368315615575620331}{57442849692401114725} a - \frac{346857635774198814}{8206121384628730675}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{134184973308}{4567293447753925} a^{15} - \frac{614211344462}{4567293447753925} a^{14} + \frac{4944214085347}{4567293447753925} a^{13} - \frac{5127613834923}{913458689550785} a^{12} + \frac{93823257782803}{4567293447753925} a^{11} - \frac{50545014700868}{652470492536275} a^{10} + \frac{1120307305434862}{4567293447753925} a^{9} - \frac{2733229551636586}{4567293447753925} a^{8} + \frac{5925367268735239}{4567293447753925} a^{7} - \frac{2372076330121971}{913458689550785} a^{6} + \frac{562356495654404}{130494098507255} a^{5} - \frac{6136203574088692}{913458689550785} a^{4} + \frac{43221464880367017}{4567293447753925} a^{3} - \frac{1222436880682859}{130494098507255} a^{2} + \frac{37099042432593054}{4567293447753925} a - \frac{2100625914697357}{652470492536275} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 20355392.4722 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_8: C_2$ |
| Character table for $C_8: C_2$ |
Intermediate fields
| \(\Q(\sqrt{-87}) \), \(\Q(\sqrt{29}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-3}, \sqrt{29})\), 4.4.219501.1, 4.0.24389.1, 8.0.48180689001.1, 8.4.12575159829261.1 x2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/7.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 29 | Data not computed | ||||||