Normalized defining polynomial
\( x^{16} - 6 x^{15} + 17 x^{14} - 32 x^{13} + 46 x^{12} - 38 x^{11} + 16 x^{10} - 12 x^{9} + 58 x^{8} + 120 x^{7} + 520 x^{6} + 884 x^{5} + 1302 x^{4} + 1524 x^{3} + 1320 x^{2} + 672 x + 169 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(15772350630880634535936=2^{16}\cdot 3^{8}\cdot 23^{4}\cdot 107^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $24.40$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 23, 107$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} + \frac{1}{3} a^{8} + \frac{1}{3} a^{5} - \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{9} a^{10} + \frac{2}{9} a^{8} + \frac{1}{9} a^{6} - \frac{4}{9} a^{5} - \frac{1}{9} a^{3} + \frac{1}{3} a - \frac{2}{9}$, $\frac{1}{27} a^{11} - \frac{1}{27} a^{10} + \frac{2}{27} a^{9} - \frac{2}{27} a^{8} + \frac{1}{27} a^{7} + \frac{13}{27} a^{6} + \frac{13}{27} a^{5} - \frac{1}{27} a^{4} - \frac{8}{27} a^{3} - \frac{2}{9} a^{2} - \frac{5}{27} a - \frac{7}{27}$, $\frac{1}{81} a^{12} + \frac{1}{81} a^{11} + \frac{2}{81} a^{9} - \frac{1}{27} a^{8} + \frac{5}{27} a^{7} - \frac{5}{27} a^{6} - \frac{2}{81} a^{5} + \frac{17}{81} a^{4} + \frac{32}{81} a^{3} + \frac{10}{81} a^{2} + \frac{37}{81} a - \frac{14}{81}$, $\frac{1}{243} a^{13} - \frac{1}{243} a^{11} + \frac{2}{243} a^{10} - \frac{5}{243} a^{9} + \frac{2}{27} a^{8} + \frac{17}{81} a^{7} + \frac{94}{243} a^{6} - \frac{62}{243} a^{5} + \frac{32}{81} a^{4} - \frac{103}{243} a^{3} + \frac{4}{9} a^{2} - \frac{17}{81} a + \frac{95}{243}$, $\frac{1}{8019} a^{14} - \frac{4}{8019} a^{13} + \frac{4}{729} a^{12} - \frac{28}{2673} a^{11} - \frac{364}{8019} a^{10} - \frac{142}{8019} a^{9} - \frac{772}{2673} a^{8} - \frac{226}{729} a^{7} - \frac{1037}{2673} a^{6} - \frac{2230}{8019} a^{5} - \frac{559}{8019} a^{4} + \frac{2797}{8019} a^{3} - \frac{65}{2673} a^{2} - \frac{763}{8019} a - \frac{794}{8019}$, $\frac{1}{24057} a^{15} + \frac{1}{24057} a^{14} + \frac{8}{8019} a^{13} + \frac{136}{24057} a^{12} + \frac{107}{24057} a^{11} - \frac{20}{2673} a^{10} - \frac{1244}{24057} a^{9} - \frac{10502}{24057} a^{8} + \frac{1388}{24057} a^{7} - \frac{3529}{24057} a^{6} - \frac{1202}{2673} a^{5} - \frac{889}{24057} a^{4} + \frac{3989}{24057} a^{3} + \frac{85}{2187} a^{2} - \frac{95}{2187} a + \frac{8504}{24057}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{5}{27} a^{15} - \frac{9445}{8019} a^{14} + \frac{28210}{8019} a^{13} - \frac{4948}{729} a^{12} + \frac{25397}{2673} a^{11} - \frac{56060}{8019} a^{10} - \frac{5078}{8019} a^{9} + \frac{15238}{2673} a^{8} + \frac{1453}{729} a^{7} + \frac{68419}{2673} a^{6} + \frac{664027}{8019} a^{5} + \frac{1051564}{8019} a^{4} + \frac{1387739}{8019} a^{3} + \frac{541259}{2673} a^{2} + \frac{1117540}{8019} a + \frac{362090}{8019} \) (order $12$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 89581.368292 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_2^2:S_4:C_2$ (as 16T724):
| A solvable group of order 384 |
| The 28 conjugacy class representatives for $C_2\times C_2^2:S_4:C_2$ |
| Character table for $C_2\times C_2^2:S_4:C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{3}) \), \(\Q(\zeta_{12})\), 8.8.125588019456.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 12 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ |
| 2.12.12.26 | $x^{12} - 162 x^{10} + 26423 x^{8} + 125508 x^{6} - 64481 x^{4} - 122498 x^{2} - 86071$ | $2$ | $6$ | $12$ | $C_6\times C_2$ | $[2]^{6}$ | |
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $23$ | 23.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 23.4.2.2 | $x^{4} - 23 x^{2} + 3703$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.2 | $x^{4} - 23 x^{2} + 3703$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 23.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $107$ | 107.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 107.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 107.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 107.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 107.4.2.1 | $x^{4} + 963 x^{2} + 286225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 107.4.2.1 | $x^{4} + 963 x^{2} + 286225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |