Normalized defining polynomial
\( x^{16} - 3 x^{14} - 11 x^{12} + 93 x^{10} - 59 x^{8} + 1860 x^{6} - 4400 x^{4} - 24000 x^{2} + 160000 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(157654670714297119140625=5^{12}\cdot 71^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $28.17$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 71$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{6} - \frac{1}{2} a$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{4}$, $\frac{1}{1180} a^{10} + \frac{3}{20} a^{8} + \frac{1}{20} a^{6} + \frac{7}{20} a^{4} - \frac{1}{20} a^{2} - \frac{1}{2} a - \frac{25}{59}$, $\frac{1}{2360} a^{11} + \frac{3}{40} a^{9} - \frac{9}{40} a^{7} + \frac{7}{40} a^{5} - \frac{1}{2} a^{4} - \frac{1}{40} a^{3} - \frac{25}{118} a$, $\frac{1}{47200} a^{12} - \frac{1}{4720} a^{11} - \frac{3}{47200} a^{10} + \frac{17}{80} a^{9} - \frac{129}{800} a^{8} + \frac{9}{80} a^{7} - \frac{73}{800} a^{6} - \frac{7}{80} a^{5} + \frac{399}{800} a^{4} - \frac{39}{80} a^{3} - \frac{1087}{2360} a^{2} + \frac{25}{236} a - \frac{11}{118}$, $\frac{1}{472000} a^{13} + \frac{17}{472000} a^{11} - \frac{869}{8000} a^{9} - \frac{653}{8000} a^{7} - \frac{661}{8000} a^{5} + \frac{2377}{11800} a^{3} + \frac{277}{590} a - \frac{1}{2}$, $\frac{1}{944000} a^{14} - \frac{3}{944000} a^{12} - \frac{1}{4720} a^{11} - \frac{11}{944000} a^{10} - \frac{3}{80} a^{9} + \frac{3527}{16000} a^{8} - \frac{11}{80} a^{7} - \frac{1}{16000} a^{6} + \frac{13}{80} a^{5} + \frac{93}{47200} a^{4} + \frac{21}{80} a^{3} - \frac{11}{2360} a^{2} - \frac{17}{118} a - \frac{3}{118}$, $\frac{1}{9440000} a^{15} - \frac{3}{9440000} a^{13} + \frac{389}{9440000} a^{11} - \frac{1}{2360} a^{10} - \frac{3273}{160000} a^{9} - \frac{3}{40} a^{8} + \frac{12399}{160000} a^{7} + \frac{9}{40} a^{6} + \frac{55553}{472000} a^{5} + \frac{13}{40} a^{4} - \frac{951}{2360} a^{3} - \frac{19}{40} a^{2} - \frac{66}{295} a + \frac{25}{118}$
Class group and class number
$C_{7}$, which has order $7$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{93}{472000} a^{14} + \frac{279}{472000} a^{12} + \frac{1023}{472000} a^{10} - \frac{11}{8000} a^{8} + \frac{93}{8000} a^{6} - \frac{8649}{23600} a^{4} + \frac{1023}{1180} a^{2} + \frac{279}{59} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 46337.4951728 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2:C_4$ (as 16T10):
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_2^2 : C_4$ |
| Character table for $C_2^2 : C_4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $71$ | 71.4.2.1 | $x^{4} + 1491 x^{2} + 609961$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 71.4.2.1 | $x^{4} + 1491 x^{2} + 609961$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 71.4.2.1 | $x^{4} + 1491 x^{2} + 609961$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 71.4.2.1 | $x^{4} + 1491 x^{2} + 609961$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |