Normalized defining polynomial
\( x^{16} - 4 x^{15} + 62 x^{14} - 162 x^{13} + 1357 x^{12} - 2204 x^{11} + 13752 x^{10} - 12451 x^{9} + 72905 x^{8} - 32084 x^{7} + 221779 x^{6} - 14352 x^{5} + 393392 x^{4} + 80477 x^{3} + 366837 x^{2} + 106495 x + 130321 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(15686332680774922119140625=3^{8}\cdot 5^{12}\cdot 29^{4}\cdot 61^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $37.56$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 29, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{19} a^{13} - \frac{1}{19} a^{12} + \frac{7}{19} a^{11} + \frac{6}{19} a^{10} + \frac{4}{19} a^{9} + \frac{4}{19} a^{8} + \frac{9}{19} a^{7} + \frac{3}{19} a^{6} - \frac{1}{19} a^{5} + \frac{6}{19} a^{3} - \frac{8}{19} a^{2} + \frac{3}{19} a$, $\frac{1}{209} a^{14} + \frac{4}{209} a^{13} - \frac{17}{209} a^{12} - \frac{16}{209} a^{11} + \frac{91}{209} a^{10} - \frac{52}{209} a^{9} + \frac{67}{209} a^{8} - \frac{104}{209} a^{7} + \frac{3}{19} a^{6} + \frac{52}{209} a^{5} + \frac{6}{209} a^{4} + \frac{98}{209} a^{3} - \frac{37}{209} a^{2} + \frac{91}{209} a - \frac{5}{11}$, $\frac{1}{8810933554239426661108012810319861} a^{15} + \frac{11844604916388394324111774535800}{8810933554239426661108012810319861} a^{14} + \frac{142781212672110297521414620483093}{8810933554239426661108012810319861} a^{13} + \frac{353895087686800350137253295242145}{8810933554239426661108012810319861} a^{12} - \frac{2753548056470446654638044270647805}{8810933554239426661108012810319861} a^{11} - \frac{46766779526949545714354603643754}{463733344959969824268842779490519} a^{10} - \frac{2116904120548896292442053969312046}{8810933554239426661108012810319861} a^{9} + \frac{1229577252638611750992766405363676}{8810933554239426661108012810319861} a^{8} + \frac{3578669524795750216164499566587582}{8810933554239426661108012810319861} a^{7} + \frac{2851009559040320864279898518642134}{8810933554239426661108012810319861} a^{6} - \frac{3560166065664609083292606926311843}{8810933554239426661108012810319861} a^{5} - \frac{4385030492830671986435756809948291}{8810933554239426661108012810319861} a^{4} + \frac{1363484540190004383473960293998406}{8810933554239426661108012810319861} a^{3} - \frac{343841598953612507636582427658688}{800993959476311514646182982756351} a^{2} + \frac{610916448042531958139933492183436}{8810933554239426661108012810319861} a - \frac{2350959415853102278087057032505}{24407018155787885487833830499501}$
Class group and class number
$C_{2}\times C_{4}\times C_{16}$, which has order $128$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7370.24268506 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4.C_2^3.C_2$ (as 16T542):
| A solvable group of order 256 |
| The 40 conjugacy class representatives for $C_2^4.C_2^3.C_2$ |
| Character table for $C_2^4.C_2^3.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.725.1, 4.0.1990125.2, 4.0.68625.1, 8.4.32063125.1, 8.4.64927828125.4, 8.0.3960597515625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $29$ | 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $61$ | 61.4.2.1 | $x^{4} + 183 x^{2} + 14884$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 61.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 61.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 61.4.2.1 | $x^{4} + 183 x^{2} + 14884$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |