Normalized defining polynomial
\( x^{16} - 6 x^{15} + 15 x^{14} - 39 x^{13} + 69 x^{12} - 114 x^{11} + 388 x^{10} - 462 x^{9} + 879 x^{8} - 1011 x^{7} + 2385 x^{6} + 3843 x^{5} + 15196 x^{4} + 47622 x^{3} + 83325 x^{2} + 73575 x + 50625 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(156736652583298165062696729=3^{10}\cdot 61^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $43.37$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{3} a^{7} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{3}$, $\frac{1}{15} a^{9} + \frac{2}{15} a^{8} - \frac{1}{15} a^{7} - \frac{1}{15} a^{6} - \frac{7}{15} a^{5} - \frac{4}{15} a^{4} - \frac{2}{15} a^{3} + \frac{2}{5} a^{2} - \frac{1}{5} a$, $\frac{1}{15} a^{10} + \frac{1}{15} a^{7} + \frac{1}{3} a^{6} + \frac{2}{5} a^{4} + \frac{1}{3} a^{3} + \frac{2}{5} a$, $\frac{1}{45} a^{11} + \frac{1}{45} a^{10} + \frac{1}{45} a^{9} - \frac{7}{45} a^{8} + \frac{1}{9} a^{7} - \frac{16}{45} a^{6} + \frac{4}{45} a^{5} + \frac{22}{45} a^{4} + \frac{13}{45} a^{3} - \frac{2}{5} a^{2} + \frac{1}{15} a$, $\frac{1}{45} a^{12} + \frac{1}{45} a^{9} - \frac{4}{45} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{19}{45} a^{3} + \frac{1}{3} a$, $\frac{1}{135} a^{13} + \frac{4}{135} a^{10} - \frac{1}{45} a^{9} - \frac{7}{45} a^{8} + \frac{2}{135} a^{7} - \frac{1}{5} a^{6} - \frac{1}{15} a^{5} + \frac{11}{135} a^{4} - \frac{1}{15} a^{3} + \frac{14}{45} a^{2} - \frac{2}{15} a$, $\frac{1}{2025} a^{14} + \frac{2}{2025} a^{13} + \frac{2}{675} a^{12} + \frac{4}{2025} a^{11} + \frac{41}{2025} a^{10} - \frac{7}{675} a^{9} + \frac{2}{81} a^{8} + \frac{148}{2025} a^{7} - \frac{44}{675} a^{6} - \frac{682}{2025} a^{5} - \frac{401}{2025} a^{4} + \frac{2}{5} a^{3} - \frac{158}{675} a^{2} + \frac{1}{5} a$, $\frac{1}{677922352552517633976825} a^{15} + \frac{5738365969005935569}{27116894102100705359073} a^{14} + \frac{1532688652373539570222}{677922352552517633976825} a^{13} + \frac{2466742545945940715917}{677922352552517633976825} a^{12} - \frac{4320125019830658740957}{677922352552517633976825} a^{11} - \frac{6680900019542297312618}{677922352552517633976825} a^{10} - \frac{1094085355505910658093}{677922352552517633976825} a^{9} - \frac{20309893142539818010987}{677922352552517633976825} a^{8} - \frac{2020460249788261233733}{677922352552517633976825} a^{7} - \frac{169818707578502330676883}{677922352552517633976825} a^{6} - \frac{27108946996502885837557}{677922352552517633976825} a^{5} - \frac{286940756830496935938988}{677922352552517633976825} a^{4} + \frac{830403843999136335388}{2073157041445008054975} a^{3} + \frac{14535598616219340252401}{225974117517505877992275} a^{2} - \frac{834116394563104452614}{5021647055944575066495} a - \frac{82201956161115123649}{334776470396305004433}$
Class group and class number
$C_{2}\times C_{6}$, which has order $12$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4498736.68408 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4.D_4$ (as 16T330):
| A solvable group of order 128 |
| The 23 conjugacy class representatives for $C_2^4.D_4$ |
| Character table for $C_2^4.D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{61}) \), 4.2.11163.1, 8.0.68412300381.1, 8.2.1391050107747.2, 8.2.205236901143.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.4.3.1 | $x^{4} + 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 3.4.3.1 | $x^{4} + 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 61 | Data not computed | ||||||