Normalized defining polynomial
\( x^{16} - 8 x^{15} + 28 x^{14} - 29 x^{13} + 105 x^{12} - 186 x^{11} + 94 x^{10} - 283 x^{9} + 245 x^{8} - 227 x^{7} + 784 x^{6} - 802 x^{5} + 599 x^{4} - 64 x^{3} + 133 x^{2} - 78 x + 13 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(156381544652244701169601=13^{8}\cdot 61^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $28.16$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{65} a^{12} - \frac{11}{65} a^{10} + \frac{14}{65} a^{9} - \frac{3}{65} a^{8} + \frac{1}{5} a^{7} - \frac{7}{65} a^{6} + \frac{2}{13} a^{5} + \frac{23}{65} a^{4} + \frac{28}{65} a^{3} - \frac{16}{65} a^{2} + \frac{2}{5} a - \frac{1}{5}$, $\frac{1}{65} a^{13} - \frac{11}{65} a^{11} + \frac{14}{65} a^{10} - \frac{3}{65} a^{9} + \frac{1}{5} a^{8} - \frac{7}{65} a^{7} + \frac{2}{13} a^{6} + \frac{23}{65} a^{5} + \frac{28}{65} a^{4} - \frac{16}{65} a^{3} + \frac{2}{5} a^{2} - \frac{1}{5} a$, $\frac{1}{65} a^{14} + \frac{14}{65} a^{11} + \frac{6}{65} a^{10} - \frac{28}{65} a^{9} + \frac{5}{13} a^{8} + \frac{23}{65} a^{7} + \frac{11}{65} a^{6} + \frac{8}{65} a^{5} - \frac{23}{65} a^{4} + \frac{9}{65} a^{3} + \frac{6}{65} a^{2} + \frac{2}{5} a - \frac{1}{5}$, $\frac{1}{2243034811951956425} a^{15} + \frac{9861306567528129}{2243034811951956425} a^{14} - \frac{9004437552154374}{2243034811951956425} a^{13} + \frac{12202414626572028}{2243034811951956425} a^{12} - \frac{11766417004927016}{118054463786945075} a^{11} - \frac{215112919520431}{4012584636765575} a^{10} - \frac{747691815985045604}{2243034811951956425} a^{9} - \frac{248007860420248671}{2243034811951956425} a^{8} + \frac{21485168664268997}{77346027998343325} a^{7} + \frac{743829905245355629}{2243034811951956425} a^{6} + \frac{477967806594660522}{2243034811951956425} a^{5} - \frac{440923165205962703}{2243034811951956425} a^{4} + \frac{916279379463885488}{2243034811951956425} a^{3} - \frac{51135540113327827}{118054463786945075} a^{2} + \frac{108543407964261}{9081112598995775} a - \frac{56453850119877433}{172541139380919725}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 116747.923556 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 7 conjugacy class representatives for $D_{8}$ |
| Character table for $D_{8}$ |
Intermediate fields
| \(\Q(\sqrt{793}) \), \(\Q(\sqrt{61}) \), \(\Q(\sqrt{13}) \), \(\Q(\sqrt{13}, \sqrt{61})\), 4.4.48373.1 x2, 4.4.10309.1 x2, 8.8.395451064801.1, 8.0.30419312677.1 x4, 8.0.6482804341.1 x4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $61$ | 61.4.2.1 | $x^{4} + 183 x^{2} + 14884$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 61.4.2.1 | $x^{4} + 183 x^{2} + 14884$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 61.4.2.1 | $x^{4} + 183 x^{2} + 14884$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 61.4.2.1 | $x^{4} + 183 x^{2} + 14884$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |