Normalized defining polynomial
\( x^{16} - x^{14} + 8 x^{12} - 33 x^{10} + 549 x^{8} + 297 x^{6} + 648 x^{4} + 729 x^{2} + 6561 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1552829235277976100000000=2^{8}\cdot 3^{4}\cdot 5^{8}\cdot 61^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $32.50$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} - \frac{1}{3} a^{4} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{7} - \frac{1}{3} a^{5} - \frac{1}{3} a^{3}$, $\frac{1}{9} a^{8} - \frac{1}{9} a^{6} - \frac{1}{9} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{27} a^{9} - \frac{4}{27} a^{7} + \frac{2}{27} a^{5} + \frac{2}{9} a^{3} + \frac{1}{3} a$, $\frac{1}{81} a^{10} - \frac{4}{81} a^{8} + \frac{2}{81} a^{6} + \frac{11}{27} a^{4} + \frac{1}{9} a^{2}$, $\frac{1}{81} a^{11} - \frac{1}{81} a^{9} - \frac{10}{81} a^{7} + \frac{13}{27} a^{5} + \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{75330} a^{12} - \frac{1}{162} a^{11} + \frac{61}{37665} a^{10} - \frac{1}{81} a^{9} - \frac{1717}{75330} a^{8} + \frac{11}{81} a^{7} - \frac{1687}{25110} a^{6} - \frac{5}{18} a^{5} - \frac{2003}{8370} a^{4} - \frac{5}{18} a^{3} + \frac{277}{930} a^{2} - \frac{1}{3} a - \frac{3}{310}$, $\frac{1}{75330} a^{13} - \frac{343}{75330} a^{11} + \frac{143}{75330} a^{9} - \frac{1}{18} a^{8} - \frac{1997}{25110} a^{7} - \frac{1}{9} a^{6} - \frac{206}{465} a^{5} + \frac{2}{9} a^{4} + \frac{338}{1395} a^{3} - \frac{1}{2} a^{2} - \frac{3}{310} a - \frac{1}{2}$, $\frac{1}{2937870} a^{14} - \frac{8}{1468935} a^{12} - \frac{1}{162} a^{11} - \frac{12973}{2937870} a^{10} + \frac{1}{162} a^{9} - \frac{43}{32643} a^{8} + \frac{5}{81} a^{7} - \frac{1357}{108810} a^{6} - \frac{13}{54} a^{5} + \frac{101}{390} a^{4} + \frac{1}{3} a^{3} + \frac{1679}{3627} a^{2} - \frac{1}{6} a - \frac{327}{4030}$, $\frac{1}{8813610} a^{15} - \frac{11}{1762722} a^{13} - \frac{17731}{8813610} a^{11} - \frac{1}{162} a^{10} + \frac{21031}{2937870} a^{9} + \frac{2}{81} a^{8} - \frac{9095}{97929} a^{7} - \frac{1}{81} a^{6} + \frac{45244}{163215} a^{5} - \frac{11}{54} a^{4} + \frac{54347}{108810} a^{3} - \frac{1}{18} a^{2} - \frac{48}{2015} a$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 415526.854308 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4:C_2^2$ (as 16T119):
| A solvable group of order 64 |
| The 22 conjugacy class representatives for $C_2^4:C_2^2$ |
| Character table for $C_2^4:C_2^2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{61}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{305}) \), 4.0.18605.1 x2, 4.0.1525.1 x2, \(\Q(\sqrt{5}, \sqrt{61})\), 8.4.1246125690000.2, 8.0.8653650625.2, 8.4.1246125690000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| $3$ | 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $61$ | 61.4.2.1 | $x^{4} + 183 x^{2} + 14884$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 61.4.2.1 | $x^{4} + 183 x^{2} + 14884$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 61.4.2.1 | $x^{4} + 183 x^{2} + 14884$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 61.4.2.1 | $x^{4} + 183 x^{2} + 14884$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |