Properties

Label 16.0.15492243194...0000.2
Degree $16$
Signature $[0, 8]$
Discriminant $2^{16}\cdot 3^{8}\cdot 5^{4}\cdot 7^{8}$
Root discriminant $13.71$
Ramified primes $2, 3, 5, 7$
Class number $1$
Class group Trivial
Galois group $C_2 \times (C_4\times C_2):C_2$ (as 16T18)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, 10, 0, 31, 0, 20, 0, 45, 0, -20, 0, 31, 0, -10, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 10*x^14 + 31*x^12 - 20*x^10 + 45*x^8 + 20*x^6 + 31*x^4 + 10*x^2 + 1)
 
gp: K = bnfinit(x^16 - 10*x^14 + 31*x^12 - 20*x^10 + 45*x^8 + 20*x^6 + 31*x^4 + 10*x^2 + 1, 1)
 

Normalized defining polynomial

\( x^{16} - 10 x^{14} + 31 x^{12} - 20 x^{10} + 45 x^{8} + 20 x^{6} + 31 x^{4} + 10 x^{2} + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(1549224319426560000=2^{16}\cdot 3^{8}\cdot 5^{4}\cdot 7^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $13.71$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 5, 7$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a + \frac{1}{4}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{7} - \frac{1}{2} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} + \frac{1}{4} a$, $\frac{1}{4} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a + \frac{1}{4}$, $\frac{1}{4} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{148} a^{12} + \frac{11}{148} a^{10} + \frac{1}{37} a^{8} + \frac{19}{74} a^{6} - \frac{1}{2} a^{5} - \frac{1}{37} a^{4} + \frac{11}{148} a^{2} + \frac{73}{148}$, $\frac{1}{148} a^{13} + \frac{11}{148} a^{11} + \frac{1}{37} a^{9} + \frac{19}{74} a^{7} - \frac{1}{2} a^{6} - \frac{1}{37} a^{5} + \frac{11}{148} a^{3} + \frac{73}{148} a$, $\frac{1}{740} a^{14} - \frac{1}{370} a^{12} - \frac{13}{148} a^{10} + \frac{3}{37} a^{8} - \frac{1}{2} a^{7} + \frac{1}{37} a^{6} - \frac{1}{2} a^{5} + \frac{57}{148} a^{4} - \frac{36}{185} a^{2} - \frac{357}{740}$, $\frac{1}{740} a^{15} - \frac{1}{370} a^{13} - \frac{13}{148} a^{11} + \frac{3}{37} a^{9} + \frac{1}{37} a^{7} + \frac{57}{148} a^{5} - \frac{1}{2} a^{4} - \frac{36}{185} a^{3} - \frac{1}{2} a^{2} - \frac{357}{740} a - \frac{1}{2}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -\frac{145}{148} a^{15} - \frac{33}{148} a^{14} + \frac{1483}{148} a^{13} + \frac{335}{148} a^{12} - \frac{1208}{37} a^{11} - \frac{1075}{148} a^{10} + \frac{1995}{74} a^{9} + \frac{835}{148} a^{8} - \frac{1842}{37} a^{7} - \frac{1649}{148} a^{6} - \frac{1401}{148} a^{5} - \frac{95}{37} a^{4} - \frac{109}{4} a^{3} - \frac{529}{74} a^{2} - \frac{159}{37} a - \frac{45}{37} \) (order $12$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 1409.65546805 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times D_4:C_2$ (as 16T18):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 32
The 20 conjugacy class representatives for $C_2 \times (C_4\times C_2):C_2$
Character table for $C_2 \times (C_4\times C_2):C_2$

Intermediate fields

\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-21}) \), \(\Q(\sqrt{7}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{21}) \), \(\Q(\sqrt{-7}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-3}, \sqrt{-7})\), \(\Q(i, \sqrt{21})\), \(\Q(\sqrt{3}, \sqrt{7})\), \(\Q(i, \sqrt{7})\), \(\Q(\sqrt{3}, \sqrt{-7})\), \(\Q(\zeta_{12})\), \(\Q(\sqrt{-3}, \sqrt{7})\), 8.0.49787136.1, 8.0.1244678400.2, 8.0.1244678400.3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Galois closure: data not computed
Degree 16 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R R R ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.8.8.1$x^{8} + 28 x^{4} + 144$$2$$4$$8$$C_4\times C_2$$[2]^{4}$
2.8.8.1$x^{8} + 28 x^{4} + 144$$2$$4$$8$$C_4\times C_2$$[2]^{4}$
$3$3.8.4.1$x^{8} + 36 x^{4} - 27 x^{2} + 324$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
3.8.4.1$x^{8} + 36 x^{4} - 27 x^{2} + 324$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$5$5.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
5.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
5.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
5.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$7$7.8.4.1$x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
7.8.4.1$x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$