Normalized defining polynomial
\( x^{16} - 7 x^{15} - 5 x^{14} - 45 x^{13} + 315 x^{12} + 1879 x^{11} - 9624 x^{10} + 89874 x^{9} + 25265 x^{8} + 1212 x^{7} - 288961 x^{6} - 4208135 x^{5} + 49678870 x^{4} - 54019469 x^{3} + 418519900 x^{2} + 325469946 x + 1236119787 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(15478121650083338314369033920290533=37^{12}\cdot 157^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $137.04$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $37, 157$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{33} a^{14} + \frac{13}{33} a^{13} - \frac{1}{11} a^{12} + \frac{2}{11} a^{11} - \frac{4}{11} a^{10} - \frac{8}{33} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{2}{33} a^{6} - \frac{16}{33} a^{5} - \frac{5}{11} a^{4} - \frac{8}{33} a^{3} - \frac{3}{11} a^{2} + \frac{16}{33} a + \frac{3}{11}$, $\frac{1}{285636228632796134390750752093494084259581026180908587754980696447} a^{15} + \frac{2016236221163846523066580654167492796973206390767226302639572681}{285636228632796134390750752093494084259581026180908587754980696447} a^{14} + \frac{109143846640745284014525246640399101209625434470602998265011074333}{285636228632796134390750752093494084259581026180908587754980696447} a^{13} - \frac{13556159955193096151357531173763956806191687951016378347723107412}{95212076210932044796916917364498028086527008726969529251660232149} a^{12} + \frac{4066002501497300059034934649001860832124925689291538333726627617}{10579119578992449421879657484944225342947445414107725472406692461} a^{11} - \frac{16481050198136740631800170280662482506290477816136145632031252180}{285636228632796134390750752093494084259581026180908587754980696447} a^{10} + \frac{3674718066285989482268982154540014501830172740526636535718356205}{10579119578992449421879657484944225342947445414107725472406692461} a^{9} + \frac{1363000527430599321573454708849315867793856150744045966785842417}{2885214430634304387785361132257516002622030567483925128838188853} a^{8} + \frac{62014542191722801439024280208113990105241803445405085159556928682}{285636228632796134390750752093494084259581026180908587754980696447} a^{7} - \frac{17248362698946416037359664612764997483507577408359396634004117399}{95212076210932044796916917364498028086527008726969529251660232149} a^{6} + \frac{6684865677440655021470426564499725456155539490100410725956877853}{25966929875708739490068250190317644023598275107355326159543699677} a^{5} + \frac{107235338122145413202401432089715061551687916535336449834866000711}{285636228632796134390750752093494084259581026180908587754980696447} a^{4} - \frac{6284617311122874329360415934195829018527239871390693968588019376}{285636228632796134390750752093494084259581026180908587754980696447} a^{3} - \frac{5776181463866787998076958728112895188224203578481015194529666057}{285636228632796134390750752093494084259581026180908587754980696447} a^{2} - \frac{140283967187378901881310454722908905939079527157173018446977674535}{285636228632796134390750752093494084259581026180908587754980696447} a - \frac{23849695558317984850427652306044888983789091468140851811814321653}{95212076210932044796916917364498028086527008726969529251660232149}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 17632859130.2 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 34 conjugacy class representatives for t16n1281 |
| Character table for t16n1281 is not computed |
Intermediate fields
| \(\Q(\sqrt{37}) \), 4.0.50653.1, 8.0.63242590255441.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }{,}\,{\href{/LocalNumberField/2.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $37$ | 37.4.3.2 | $x^{4} - 148$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 37.4.3.2 | $x^{4} - 148$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 37.8.6.1 | $x^{8} - 1147 x^{4} + 855625$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $157$ | 157.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 157.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 157.4.3.3 | $x^{4} + 785$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 157.4.2.1 | $x^{4} + 1727 x^{2} + 887364$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 157.4.2.2 | $x^{4} - 157 x^{2} + 147894$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |