Normalized defining polynomial
\( x^{16} - 5 x^{15} + 66 x^{14} - 192 x^{13} + 1465 x^{12} - 2188 x^{11} + 15250 x^{10} - 6042 x^{9} + 91904 x^{8} + 133932 x^{7} + 317208 x^{6} + 1246339 x^{5} + 1728007 x^{4} + 3416917 x^{3} + 5720470 x^{2} + 4064538 x + 1048347 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(15478121650083338314369033920290533=37^{12}\cdot 157^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $137.04$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $37, 157$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{11} + \frac{1}{3} a^{9} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{11} + \frac{1}{3} a^{10} + \frac{1}{3} a^{9} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a$, $\frac{1}{333} a^{14} - \frac{16}{111} a^{13} - \frac{25}{333} a^{12} - \frac{128}{333} a^{11} - \frac{95}{333} a^{10} - \frac{32}{111} a^{9} + \frac{35}{111} a^{8} - \frac{4}{37} a^{7} + \frac{44}{333} a^{6} + \frac{163}{333} a^{5} - \frac{8}{37} a^{4} - \frac{14}{111} a^{3} - \frac{29}{333} a^{2} - \frac{49}{111} a + \frac{9}{37}$, $\frac{1}{17825544201148789123613898378810385865084313} a^{15} - \frac{836274807086143941660323055044661516403}{17825544201148789123613898378810385865084313} a^{14} + \frac{741859138190181517399605937390129149995438}{17825544201148789123613898378810385865084313} a^{13} - \frac{1543473172333928282161262402123559970166413}{17825544201148789123613898378810385865084313} a^{12} + \frac{533916031631629972496936011858111546015928}{1980616022349865458179322042090042873898257} a^{11} + \frac{497851680456481474511510964133171562648207}{17825544201148789123613898378810385865084313} a^{10} + \frac{902268701738452896139670434701186714159053}{5941848067049596374537966126270128621694771} a^{9} + \frac{362964511418864940369953830085400036614122}{5941848067049596374537966126270128621694771} a^{8} - \frac{8786069377306225445446294494437951671248418}{17825544201148789123613898378810385865084313} a^{7} + \frac{6976331932216195762389078353797973544068441}{17825544201148789123613898378810385865084313} a^{6} + \frac{4070664474687158378478293407681591178370185}{17825544201148789123613898378810385865084313} a^{5} - \frac{1258070796643908948264066785057653417877599}{5941848067049596374537966126270128621694771} a^{4} + \frac{6548530532503746041575342085501573789034508}{17825544201148789123613898378810385865084313} a^{3} - \frac{6364409111699195325829809023513503991240296}{17825544201148789123613898378810385865084313} a^{2} - \frac{2653875371350777328912973843320246949941203}{5941848067049596374537966126270128621694771} a - \frac{286273535529592942671229263329577862541465}{1980616022349865458179322042090042873898257}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 16595193587.7 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 34 conjugacy class representatives for t16n1281 |
| Character table for t16n1281 is not computed |
Intermediate fields
| \(\Q(\sqrt{37}) \), 4.0.50653.1, 8.0.63242590255441.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }{,}\,{\href{/LocalNumberField/2.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $37$ | 37.4.3.2 | $x^{4} - 148$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 37.4.3.2 | $x^{4} - 148$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 37.8.6.1 | $x^{8} - 1147 x^{4} + 855625$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $157$ | 157.2.1.2 | $x^{2} + 785$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 157.2.1.2 | $x^{2} + 785$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 157.4.2.1 | $x^{4} + 1727 x^{2} + 887364$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 157.4.3.4 | $x^{4} + 19625$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 157.4.0.1 | $x^{4} - x + 15$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |