Normalized defining polynomial
\( x^{16} + 123360 x^{12} + 3810894945 x^{8} - 521459496960 x^{4} + 17868678762496 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1543488928107008169638324168125095939257028050944=2^{48}\cdot 257^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1027.50$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 257$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4112=2^{4}\cdot 257\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4112}(1,·)$, $\chi_{4112}(835,·)$, $\chi_{4112}(261,·)$, $\chi_{4112}(513,·)$, $\chi_{4112}(1803,·)$, $\chi_{4112}(3851,·)$, $\chi_{4112}(3277,·)$, $\chi_{4112}(4111,·)$, $\chi_{4112}(707,·)$, $\chi_{4112}(1815,·)$, $\chi_{4112}(2329,·)$, $\chi_{4112}(3599,·)$, $\chi_{4112}(2309,·)$, $\chi_{4112}(3405,·)$, $\chi_{4112}(1783,·)$, $\chi_{4112}(2297,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{61937} a^{8} - \frac{1}{241} a^{4} - \frac{60}{241}$, $\frac{1}{123874} a^{9} + \frac{120}{241} a^{5} + \frac{181}{482} a$, $\frac{1}{495496} a^{10} + \frac{30}{241} a^{6} - \frac{783}{1928} a^{2}$, $\frac{1}{254684944} a^{11} - \frac{4082}{61937} a^{7} + \frac{41633}{990992} a^{3}$, $\frac{1}{15206281409590336} a^{12} - \frac{19061}{142231755178} a^{8} + \frac{566861410533}{4551416165696} a^{4} + \frac{1798153185}{3597301201}$, $\frac{1}{60825125638361344} a^{13} + \frac{2277333}{568927020712} a^{9} + \frac{547975866277}{18205664662784} a^{5} + \frac{902559525}{14389204804} a$, $\frac{1}{31264114578117730816} a^{14} + \frac{68872759}{292428488645968} a^{10} - \frac{3145028275413083}{9357711636670976} a^{6} - \frac{5332747205}{14389204804} a^{2}$, $\frac{1}{125056458312470923264} a^{15} + \frac{2277333}{1169713954583872} a^{11} - \frac{4805747495108699}{37430846546683904} a^{7} - \frac{13366668703391}{29584205077024} a^{3}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{4}\times C_{4}\times C_{8}\times C_{16}\times C_{80880}$, which has order $10601103360$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{15}{245512075328} a^{12} + \frac{4453}{590173258} a^{8} + \frac{17166315}{73484608} a^{4} - \frac{238298640}{14926561} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 638360561.5229604 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_8$ (as 16T5):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_8\times C_2$ |
| Character table for $C_8\times C_2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.24.10 | $x^{8} + 16$ | $8$ | $1$ | $24$ | $C_4\times C_2$ | $[2, 3, 4]$ |
| 2.8.24.10 | $x^{8} + 16$ | $8$ | $1$ | $24$ | $C_4\times C_2$ | $[2, 3, 4]$ | |
| 257 | Data not computed | ||||||