Normalized defining polynomial
\( x^{16} + 98688 x^{12} + 30716640 x^{10} + 2073969697 x^{8} + 2840635392 x^{6} + 164025558208 x^{4} - 2243290349568 x^{2} + 5648874013696 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1543488928107008169638324168125095939257028050944=2^{48}\cdot 257^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1027.50$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 257$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4112=2^{4}\cdot 257\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4112}(1,·)$, $\chi_{4112}(835,·)$, $\chi_{4112}(1221,·)$, $\chi_{4112}(1349,·)$, $\chi_{4112}(513,·)$, $\chi_{4112}(3851,·)$, $\chi_{4112}(1803,·)$, $\chi_{4112}(2317,·)$, $\chi_{4112}(707,·)$, $\chi_{4112}(2055,·)$, $\chi_{4112}(2329,·)$, $\chi_{4112}(3871,·)$, $\chi_{4112}(1543,·)$, $\chi_{4112}(2297,·)$, $\chi_{4112}(253,·)$, $\chi_{4112}(3839,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{257} a^{8}$, $\frac{1}{8738} a^{9} + \frac{5}{17} a^{7} - \frac{2}{17} a^{5} - \frac{3}{17} a^{3} - \frac{9}{34} a$, $\frac{1}{17476} a^{10} + \frac{5}{4369} a^{8} - \frac{1}{17} a^{6} + \frac{7}{17} a^{4} + \frac{25}{68} a^{2}$, $\frac{1}{594184} a^{11} - \frac{4}{74273} a^{9} + \frac{45}{289} a^{7} - \frac{115}{289} a^{5} + \frac{745}{2312} a^{3} + \frac{84}{289} a$, $\frac{1}{161618048} a^{12} + \frac{287}{10101128} a^{10} + \frac{2241}{5050564} a^{8} - \frac{7037}{19652} a^{6} + \frac{90913}{628864} a^{4} - \frac{10073}{39304} a^{2} - \frac{1}{4}$, $\frac{1}{323236096} a^{13} + \frac{15}{20202256} a^{11} - \frac{343}{10101128} a^{9} + \frac{12207}{39304} a^{7} - \frac{48351}{1257728} a^{5} - \frac{11569}{78608} a^{3} - \frac{837}{2312} a$, $\frac{1}{555309384020555938339855979446784} a^{14} - \frac{34623411764108417142357}{138827346005138984584963994861696} a^{12} + \frac{490945256252411834960086419}{17353418250642373073120499357712} a^{10} - \frac{883283282560297211242051757}{17353418250642373073120499357712} a^{8} + \frac{290822388190963902045803653537}{2160736902803719604435237274112} a^{6} - \frac{91514553459743211713806639093}{540184225700929901108809318528} a^{4} + \frac{18953376568059375079286579197}{67523028212616237638601164816} a^{2} - \frac{66434509945802226103575}{202113924080818709182724}$, $\frac{1}{2221237536082223753359423917787136} a^{15} + \frac{206090191394842774221055}{138827346005138984584963994861696} a^{13} + \frac{49427389097863364750425841}{69413673002569492292481997430848} a^{11} - \frac{2996384358825256815747431177}{69413673002569492292481997430848} a^{9} - \frac{191308250868384279587033485023}{8642947611214878417740949096448} a^{7} + \frac{143372810000874932004186665759}{540184225700929901108809318528} a^{5} + \frac{83890862406871739380667747243}{270092112850464950554404659264} a^{3} - \frac{2137908264833602031296902}{14602731014839151738451809} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{4}\times C_{8}\times C_{24}\times C_{24}\times C_{32352}$, which has order $38163972096$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 56884691.566921 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_8$ (as 16T5):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_8\times C_2$ |
| Character table for $C_8\times C_2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.1.0.1}{1} }^{16}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.24.10 | $x^{8} + 16$ | $8$ | $1$ | $24$ | $C_4\times C_2$ | $[2, 3, 4]$ |
| 2.8.24.10 | $x^{8} + 16$ | $8$ | $1$ | $24$ | $C_4\times C_2$ | $[2, 3, 4]$ | |
| 257 | Data not computed | ||||||