Normalized defining polynomial
\( x^{16} - 8 x^{15} + 324 x^{14} - 2128 x^{13} + 45850 x^{12} - 247800 x^{11} + 3716400 x^{10} - 16360264 x^{9} + 189148283 x^{8} - 661072120 x^{7} + 6197750976 x^{6} - 16345577288 x^{5} + 127759270042 x^{4} - 229015759264 x^{3} + 1515042967660 x^{2} - 1403153880664 x + 7910928927679 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1536431903362769340925896294400000000=2^{62}\cdot 5^{8}\cdot 31^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $182.67$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4960=2^{5}\cdot 5\cdot 31\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4960}(1,·)$, $\chi_{4960}(1861,·)$, $\chi_{4960}(3721,·)$, $\chi_{4960}(1549,·)$, $\chi_{4960}(3409,·)$, $\chi_{4960}(1241,·)$, $\chi_{4960}(3101,·)$, $\chi_{4960}(929,·)$, $\chi_{4960}(2789,·)$, $\chi_{4960}(4649,·)$, $\chi_{4960}(621,·)$, $\chi_{4960}(2481,·)$, $\chi_{4960}(4341,·)$, $\chi_{4960}(2169,·)$, $\chi_{4960}(4029,·)$, $\chi_{4960}(309,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{47} a^{13} + \frac{17}{47} a^{12} + \frac{6}{47} a^{11} + \frac{15}{47} a^{10} + \frac{9}{47} a^{9} + \frac{10}{47} a^{8} - \frac{18}{47} a^{7} - \frac{2}{47} a^{6} - \frac{22}{47} a^{5} - \frac{1}{47} a^{4} + \frac{17}{47} a^{2} + \frac{10}{47} a - \frac{21}{47}$, $\frac{1}{260101322894689053199758673} a^{14} - \frac{7}{260101322894689053199758673} a^{13} - \frac{5770097498513485582620752}{260101322894689053199758673} a^{12} + \frac{34620584991080913495724603}{260101322894689053199758673} a^{11} - \frac{4247805696782034629879754}{260101322894689053199758673} a^{10} - \frac{36015011039642480694984918}{260101322894689053199758673} a^{9} - \frac{32931961848224063374224777}{260101322894689053199758673} a^{8} - \frac{51659620151425973479496484}{260101322894689053199758673} a^{7} - \frac{42891687346138878193218125}{260101322894689053199758673} a^{6} + \frac{115525971063114843545670755}{260101322894689053199758673} a^{5} - \frac{72508590729094282022478746}{260101322894689053199758673} a^{4} - \frac{62103523372344036307249921}{260101322894689053199758673} a^{3} - \frac{40578736810833723981731557}{260101322894689053199758673} a^{2} - \frac{61540844455885851975268991}{260101322894689053199758673} a - \frac{68316179031966754183221300}{260101322894689053199758673}$, $\frac{1}{3897158204336714757263273341812463} a^{15} + \frac{7491608}{3897158204336714757263273341812463} a^{14} - \frac{22152326306533775570404945543639}{3897158204336714757263273341812463} a^{13} + \frac{100762769136094685657843648860406}{3897158204336714757263273341812463} a^{12} + \frac{1888120848049751445670592267061040}{3897158204336714757263273341812463} a^{11} - \frac{830980800087641368925754991711476}{3897158204336714757263273341812463} a^{10} - \frac{854457639632689283556451938437527}{3897158204336714757263273341812463} a^{9} + \frac{36533997916470166342716126873751}{3897158204336714757263273341812463} a^{8} + \frac{1497410371635884947732794498606965}{3897158204336714757263273341812463} a^{7} - \frac{1736653613087467150935932563821204}{3897158204336714757263273341812463} a^{6} - \frac{1869314613553475883477597413755442}{3897158204336714757263273341812463} a^{5} - \frac{997353290594722717254666388032767}{3897158204336714757263273341812463} a^{4} - \frac{1216226769822458580018335333296397}{3897158204336714757263273341812463} a^{3} - \frac{1863342027099302419329812731616515}{3897158204336714757263273341812463} a^{2} + \frac{1599905372388102021885562591440026}{3897158204336714757263273341812463} a + \frac{1622075314792336824766013051930435}{3897158204336714757263273341812463}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{480}\times C_{480}$, which has order $14745600$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 15753.94986242651 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_8$ (as 16T5):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_8\times C_2$ |
| Character table for $C_8\times C_2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $31$ | 31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |