Normalized defining polynomial
\( x^{16} - 3 x^{15} - 466 x^{14} + 8167 x^{13} + 204662 x^{12} + 89446 x^{11} + 26545517 x^{10} + 1241998870 x^{9} + 20144084946 x^{8} + 243389781077 x^{7} + 2107575937554 x^{6} + 12621694069014 x^{5} + 82741220348795 x^{4} - 276270386009564 x^{3} + 2766467958123332 x^{2} - 3706153303430478 x + 1463534766472091 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(15359445630083788418852698524374845584773320185041=41^{15}\cdot 61^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1186.17$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $41, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{4} a^{12} - \frac{1}{2} a^{11} + \frac{1}{4} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} + \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4}$, $\frac{1}{4} a^{13} + \frac{1}{4} a^{10} - \frac{1}{2} a^{8} + \frac{1}{4} a^{7} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{332} a^{14} - \frac{13}{166} a^{13} + \frac{27}{332} a^{12} + \frac{67}{332} a^{11} + \frac{45}{166} a^{10} - \frac{3}{332} a^{9} + \frac{123}{332} a^{8} - \frac{10}{83} a^{7} + \frac{9}{332} a^{6} - \frac{163}{332} a^{5} + \frac{47}{166} a^{4} - \frac{59}{332} a^{3} + \frac{123}{332} a^{2} + \frac{30}{83} a + \frac{93}{332}$, $\frac{1}{1562434085343895708142186231710311413775008462664620030192146009697358632343420205889960920454894220559641945895677164} a^{15} - \frac{4986570817473102654333981116007831348978989016343576453901393449617444217938914840120013581166298952121998510519}{7301093856747176206271898279020146793341161040488878645757691634099806693193552363971780002125673927848794139699426} a^{14} + \frac{22209451896907243876545286330781270111882993347612629789414731584741793731152866617557020165421267804036194939716617}{781217042671947854071093115855155706887504231332310015096073004848679316171710102944980460227447110279820972947838582} a^{13} - \frac{48335629491348051290384827217011021954854105230932370719906875078556991914909811557110139269584594573328250843774405}{390608521335973927035546557927577853443752115666155007548036502424339658085855051472490230113723555139910486473919291} a^{12} - \frac{94047030633274889189572381186656809621351050027565408522807683445892047339659963998377737444692603917034231524045470}{390608521335973927035546557927577853443752115666155007548036502424339658085855051472490230113723555139910486473919291} a^{11} - \frac{163592687632907292196875097330214364306352417551099778178591104063181292618598686947978056648282400406758510937267347}{390608521335973927035546557927577853443752115666155007548036502424339658085855051472490230113723555139910486473919291} a^{10} - \frac{187045426287489839613172609131017336554392291879125996988795379493475705635346780534122238907226438650547142091720988}{390608521335973927035546557927577853443752115666155007548036502424339658085855051472490230113723555139910486473919291} a^{9} - \frac{189095934783234910131478447990457696583483652000217730110345418066226036779514308347213421375348876310363047691345194}{390608521335973927035546557927577853443752115666155007548036502424339658085855051472490230113723555139910486473919291} a^{8} + \frac{342639113472820329821362680514425769168047739892788387769806807741806000290771015707029688557839372445663923767141925}{781217042671947854071093115855155706887504231332310015096073004848679316171710102944980460227447110279820972947838582} a^{7} - \frac{386531567463741609911357247216519168416880573663234209687502710211337477813673944855633346129321923311027382285178021}{781217042671947854071093115855155706887504231332310015096073004848679316171710102944980460227447110279820972947838582} a^{6} + \frac{227537556588901180955290194379059407415094918890463726063295502888394365124588820315253249415884177719028927276487241}{781217042671947854071093115855155706887504231332310015096073004848679316171710102944980460227447110279820972947838582} a^{5} + \frac{119751467921344892042150199425761629680124907335232058711562897755082255523834695628043725329807811878667012115596}{251518687273647087595329399824583292623150106674922735059907599758106669726886704103342067040388638209858651947147} a^{4} + \frac{160559693932793321791092413019040715650939891741701584060325166027592164392396920839078208526640640087609731379073073}{390608521335973927035546557927577853443752115666155007548036502424339658085855051472490230113723555139910486473919291} a^{3} - \frac{142355401396016588014429654856564152915472885513066370485139269611872196942779874565641623900388422080383776395978450}{390608521335973927035546557927577853443752115666155007548036502424339658085855051472490230113723555139910486473919291} a^{2} + \frac{345967072681059809875424231991950947556312476179976673437755643009611030269533599677982224399082072365552066676248661}{781217042671947854071093115855155706887504231332310015096073004848679316171710102944980460227447110279820972947838582} a + \frac{757827739032354820453523633333319588695908827958494959412986282455815736834311187265339289383612350609710141197933861}{1562434085343895708142186231710311413775008462664620030192146009697358632343420205889960920454894220559641945895677164}$
Class group and class number
$C_{4}\times C_{11975140}$, which has order $47900560$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 16603475989.7 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_8$ (as 16T104):
| A solvable group of order 64 |
| The 22 conjugacy class representatives for $C_2^3.C_8$ |
| Character table for $C_2^3.C_8$ is not computed |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.4.256455041.2, 8.8.10033813098753844365041.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 32 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | $16$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{8}$ | $16$ | $16$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 41 | Data not computed | ||||||
| $61$ | 61.8.7.3 | $x^{8} + 122$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 61.8.7.3 | $x^{8} + 122$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |