Normalized defining polynomial
\( x^{16} - 5 x^{15} + 7 x^{14} + 99 x^{13} - 356 x^{12} - 1132 x^{11} + 3572 x^{10} + 8350 x^{9} - 14239 x^{8} - 36480 x^{7} - 11456 x^{6} + 96639 x^{5} + 329692 x^{4} - 182670 x^{3} - 1169950 x^{2} + 185500 x + 1500625 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(153400693519826106945591092441=31^{12}\cdot 41^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $66.70$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $31, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5} a^{12} - \frac{2}{5} a^{11} + \frac{1}{5} a^{10} + \frac{2}{5} a^{9} - \frac{2}{5} a^{7} + \frac{1}{5} a^{6} - \frac{2}{5} a^{5} - \frac{1}{5} a^{2} + \frac{1}{5} a$, $\frac{1}{25} a^{13} - \frac{2}{25} a^{12} + \frac{11}{25} a^{11} + \frac{12}{25} a^{10} - \frac{2}{5} a^{9} + \frac{8}{25} a^{8} - \frac{4}{25} a^{7} - \frac{7}{25} a^{6} - \frac{6}{25} a^{3} - \frac{4}{25} a^{2} - \frac{1}{5} a$, $\frac{1}{4375} a^{14} + \frac{38}{4375} a^{13} + \frac{31}{4375} a^{12} - \frac{1998}{4375} a^{11} + \frac{414}{875} a^{10} - \frac{281}{625} a^{9} + \frac{541}{4375} a^{8} + \frac{358}{4375} a^{7} - \frac{28}{125} a^{6} + \frac{17}{35} a^{5} - \frac{308}{625} a^{4} - \frac{444}{4375} a^{3} + \frac{352}{875} a^{2} - \frac{46}{175} a - \frac{1}{5}$, $\frac{1}{196871792317934610358046385140726875} a^{15} - \frac{1532865795854700258730793422589}{196871792317934610358046385140726875} a^{14} + \frac{477699005334383630131531827290176}{39374358463586922071609277028145375} a^{13} + \frac{604776565545522065134033165855243}{39374358463586922071609277028145375} a^{12} - \frac{32778780177494015193750235571023134}{196871792317934610358046385140726875} a^{11} + \frac{68608889007483262178788393374956743}{196871792317934610358046385140726875} a^{10} - \frac{3690327408382154466321833841744876}{7874871692717384414321855405629075} a^{9} + \frac{41266090359280060506622741353492676}{196871792317934610358046385140726875} a^{8} + \frac{2844984457038790967824701900681354}{196871792317934610358046385140726875} a^{7} + \frac{8527595902890533755865383400074197}{39374358463586922071609277028145375} a^{6} - \frac{52411057511593153677812817060093406}{196871792317934610358046385140726875} a^{5} + \frac{72546457349489620083848396324317118}{196871792317934610358046385140726875} a^{4} + \frac{1374061657189587323037365745684723}{196871792317934610358046385140726875} a^{3} + \frac{7110383972276929819196052995974076}{39374358463586922071609277028145375} a^{2} - \frac{2274751608642683759687616624465638}{7874871692717384414321855405629075} a + \frac{29778886627766024993626497059257}{224996334077639554694910154446545}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 381072472.875 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4.D_4:C_4$ (as 16T289):
| A solvable group of order 128 |
| The 44 conjugacy class representatives for $C_4.D_4:C_4$ |
| Character table for $C_4.D_4:C_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-31}) \), 4.0.39401.1, 8.0.63649990841.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{8}$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | $16$ | R | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ | $16$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $31$ | 31.4.3.1 | $x^{4} + 217$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ |
| 31.4.3.1 | $x^{4} + 217$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 31.4.3.1 | $x^{4} + 217$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 31.4.3.1 | $x^{4} + 217$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| $41$ | 41.4.0.1 | $x^{4} - x + 17$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 41.4.0.1 | $x^{4} - x + 17$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 41.8.7.2 | $x^{8} - 1476$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |