Normalized defining polynomial
\( x^{16} - 3 x^{15} + 32 x^{14} - 208 x^{13} + 2259 x^{12} - 4308 x^{11} + 4001 x^{10} - 43853 x^{9} + 101795 x^{8} - 25994 x^{7} + 97717 x^{6} - 564362 x^{5} + 610004 x^{4} - 130309 x^{3} + 129810 x^{2} - 328710 x + 152441 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1533312083436908616990955243393=11^{8}\cdot 97^{11}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $77.02$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{99809230375518701572945670259588131565670486051} a^{15} + \frac{20935795880264460951941692379438922879666126931}{99809230375518701572945670259588131565670486051} a^{14} - \frac{24620331193084486735613758946899009161540176555}{99809230375518701572945670259588131565670486051} a^{13} + \frac{13007627663585074441838661748753222882254360705}{99809230375518701572945670259588131565670486051} a^{12} - \frac{15764934208895478043075704890947029978898986655}{99809230375518701572945670259588131565670486051} a^{11} - \frac{28914021462413588055504313850519260289999572128}{99809230375518701572945670259588131565670486051} a^{10} + \frac{19712503116968923500118269411625092466781595107}{99809230375518701572945670259588131565670486051} a^{9} - \frac{20972876690997646487426624613837831731001246870}{99809230375518701572945670259588131565670486051} a^{8} + \frac{37038014764805757473126779356654944063867329561}{99809230375518701572945670259588131565670486051} a^{7} + \frac{42894168884701089510436091269790282315295346637}{99809230375518701572945670259588131565670486051} a^{6} - \frac{40531410799328395168447035157672799788968859202}{99809230375518701572945670259588131565670486051} a^{5} + \frac{44185313629741187413645904922523264630770765353}{99809230375518701572945670259588131565670486051} a^{4} - \frac{31840641272382555985577901569765126558265361914}{99809230375518701572945670259588131565670486051} a^{3} - \frac{22069275428279185652718815011529182614431793743}{99809230375518701572945670259588131565670486051} a^{2} - \frac{47074945067987476759559780382120575767549916820}{99809230375518701572945670259588131565670486051} a + \frac{30057106360534371437640775063194747366347467537}{99809230375518701572945670259588131565670486051}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 79144174.7499 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4.D_4:C_4$ (as 16T289):
| A solvable group of order 128 |
| The 44 conjugacy class representatives for $C_4.D_4:C_4$ |
| Character table for $C_4.D_4:C_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-11}) \), 4.0.11737.1, 8.0.13362445393.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ | $16$ | R | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}$ | $16$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ | $16$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 11 | Data not computed | ||||||
| $97$ | 97.8.4.2 | $x^{8} - 912673 x^{2} + 2036173463$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ |
| 97.8.7.6 | $x^{8} + 12125$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |