Properties

Label 16.0.15333120834...3393.1
Degree $16$
Signature $[0, 8]$
Discriminant $11^{8}\cdot 97^{11}$
Root discriminant $77.02$
Ramified primes $11, 97$
Class number $2$ (GRH)
Class group $[2]$ (GRH)
Galois group $C_4.D_4:C_4$ (as 16T289)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![152441, -328710, 129810, -130309, 610004, -564362, 97717, -25994, 101795, -43853, 4001, -4308, 2259, -208, 32, -3, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 3*x^15 + 32*x^14 - 208*x^13 + 2259*x^12 - 4308*x^11 + 4001*x^10 - 43853*x^9 + 101795*x^8 - 25994*x^7 + 97717*x^6 - 564362*x^5 + 610004*x^4 - 130309*x^3 + 129810*x^2 - 328710*x + 152441)
 
gp: K = bnfinit(x^16 - 3*x^15 + 32*x^14 - 208*x^13 + 2259*x^12 - 4308*x^11 + 4001*x^10 - 43853*x^9 + 101795*x^8 - 25994*x^7 + 97717*x^6 - 564362*x^5 + 610004*x^4 - 130309*x^3 + 129810*x^2 - 328710*x + 152441, 1)
 

Normalized defining polynomial

\( x^{16} - 3 x^{15} + 32 x^{14} - 208 x^{13} + 2259 x^{12} - 4308 x^{11} + 4001 x^{10} - 43853 x^{9} + 101795 x^{8} - 25994 x^{7} + 97717 x^{6} - 564362 x^{5} + 610004 x^{4} - 130309 x^{3} + 129810 x^{2} - 328710 x + 152441 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(1533312083436908616990955243393=11^{8}\cdot 97^{11}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $77.02$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $11, 97$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{99809230375518701572945670259588131565670486051} a^{15} + \frac{20935795880264460951941692379438922879666126931}{99809230375518701572945670259588131565670486051} a^{14} - \frac{24620331193084486735613758946899009161540176555}{99809230375518701572945670259588131565670486051} a^{13} + \frac{13007627663585074441838661748753222882254360705}{99809230375518701572945670259588131565670486051} a^{12} - \frac{15764934208895478043075704890947029978898986655}{99809230375518701572945670259588131565670486051} a^{11} - \frac{28914021462413588055504313850519260289999572128}{99809230375518701572945670259588131565670486051} a^{10} + \frac{19712503116968923500118269411625092466781595107}{99809230375518701572945670259588131565670486051} a^{9} - \frac{20972876690997646487426624613837831731001246870}{99809230375518701572945670259588131565670486051} a^{8} + \frac{37038014764805757473126779356654944063867329561}{99809230375518701572945670259588131565670486051} a^{7} + \frac{42894168884701089510436091269790282315295346637}{99809230375518701572945670259588131565670486051} a^{6} - \frac{40531410799328395168447035157672799788968859202}{99809230375518701572945670259588131565670486051} a^{5} + \frac{44185313629741187413645904922523264630770765353}{99809230375518701572945670259588131565670486051} a^{4} - \frac{31840641272382555985577901569765126558265361914}{99809230375518701572945670259588131565670486051} a^{3} - \frac{22069275428279185652718815011529182614431793743}{99809230375518701572945670259588131565670486051} a^{2} - \frac{47074945067987476759559780382120575767549916820}{99809230375518701572945670259588131565670486051} a + \frac{30057106360534371437640775063194747366347467537}{99809230375518701572945670259588131565670486051}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}$, which has order $2$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 79144174.7499 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_4.D_4:C_4$ (as 16T289):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 128
The 44 conjugacy class representatives for $C_4.D_4:C_4$
Character table for $C_4.D_4:C_4$ is not computed

Intermediate fields

\(\Q(\sqrt{-11}) \), 4.0.11737.1, 8.0.13362445393.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/5.8.0.1}{8} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ $16$ R $16$ $16$ $16$ ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}$ $16$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ $16$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
11Data not computed
$97$97.8.4.2$x^{8} - 912673 x^{2} + 2036173463$$2$$4$$4$$C_8$$[\ ]_{2}^{4}$
97.8.7.6$x^{8} + 12125$$8$$1$$7$$C_8$$[\ ]_{8}$