Properties

Label 16.0.152812774400000000.1
Degree $16$
Signature $[0, 8]$
Discriminant $1.528\times 10^{17}$
Root discriminant \(11.86\)
Ramified primes $2,5,11,13,19$
Class number $1$
Class group trivial
Galois group $C_2^7.C_2\wr D_4$ (as 16T1778)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 2*x^15 + 3*x^14 - 2*x^13 + 6*x^11 - 4*x^10 - 4*x^9 + 15*x^8 - 4*x^7 - 4*x^6 + 6*x^5 - 2*x^3 + 3*x^2 - 2*x + 1)
 
gp: K = bnfinit(y^16 - 2*y^15 + 3*y^14 - 2*y^13 + 6*y^11 - 4*y^10 - 4*y^9 + 15*y^8 - 4*y^7 - 4*y^6 + 6*y^5 - 2*y^3 + 3*y^2 - 2*y + 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^16 - 2*x^15 + 3*x^14 - 2*x^13 + 6*x^11 - 4*x^10 - 4*x^9 + 15*x^8 - 4*x^7 - 4*x^6 + 6*x^5 - 2*x^3 + 3*x^2 - 2*x + 1);
 
oscar: Qx, x = polynomial_ring(QQ); K, a = number_field(x^16 - 2*x^15 + 3*x^14 - 2*x^13 + 6*x^11 - 4*x^10 - 4*x^9 + 15*x^8 - 4*x^7 - 4*x^6 + 6*x^5 - 2*x^3 + 3*x^2 - 2*x + 1)
 

\( x^{16} - 2 x^{15} + 3 x^{14} - 2 x^{13} + 6 x^{11} - 4 x^{10} - 4 x^{9} + 15 x^{8} - 4 x^{7} - 4 x^{6} + \cdots + 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $16$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 8]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(152812774400000000\) \(\medspace = 2^{16}\cdot 5^{8}\cdot 11\cdot 13^{4}\cdot 19\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(11.86\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{3/2}5^{1/2}11^{1/2}13^{1/2}19^{1/2}\approx 329.66649814623264$
Ramified primes:   \(2\), \(5\), \(11\), \(13\), \(19\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{209}) \)
$\card{ \Aut(K/\Q) }$:  $2$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2}a^{12}-\frac{1}{2}a^{8}-\frac{1}{2}a^{6}-\frac{1}{2}a^{4}-\frac{1}{2}$, $\frac{1}{2}a^{13}-\frac{1}{2}a^{9}-\frac{1}{2}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a$, $\frac{1}{178}a^{14}+\frac{21}{89}a^{13}-\frac{19}{178}a^{12}+\frac{5}{89}a^{11}-\frac{75}{178}a^{10}+\frac{39}{89}a^{9}+\frac{16}{89}a^{8}+\frac{40}{89}a^{7}+\frac{16}{89}a^{6}+\frac{39}{89}a^{5}-\frac{75}{178}a^{4}+\frac{5}{89}a^{3}-\frac{19}{178}a^{2}+\frac{21}{89}a+\frac{1}{178}$, $\frac{1}{178}a^{15}-\frac{3}{178}a^{13}+\frac{7}{178}a^{12}+\frac{39}{178}a^{11}+\frac{12}{89}a^{10}-\frac{20}{89}a^{9}+\frac{71}{178}a^{8}+\frac{27}{89}a^{7}+\frac{69}{178}a^{6}+\frac{31}{178}a^{5}+\frac{45}{178}a^{4}-\frac{83}{178}a^{3}-\frac{25}{89}a^{2}+\frac{17}{178}a+\frac{47}{178}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

Trivial group, which has order $1$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $7$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{121}{178}a^{15}-\frac{79}{89}a^{14}+\frac{105}{89}a^{13}+\frac{11}{89}a^{12}-\frac{243}{178}a^{11}+\frac{435}{89}a^{10}-\frac{165}{178}a^{9}-\frac{324}{89}a^{8}+\frac{1637}{178}a^{7}+2a^{6}-\frac{326}{89}a^{5}+\frac{415}{89}a^{4}+\frac{125}{178}a^{3}-\frac{189}{89}a^{2}+\frac{69}{89}a-\frac{39}{89}$, $a^{15}-2a^{14}+3a^{13}-2a^{12}+6a^{10}-4a^{9}-4a^{8}+15a^{7}-4a^{6}-4a^{5}+6a^{4}-2a^{2}+3a-2$, $\frac{21}{178}a^{15}+\frac{33}{178}a^{14}-\frac{101}{178}a^{13}+\frac{143}{178}a^{12}-\frac{97}{178}a^{11}-\frac{13}{178}a^{10}+\frac{244}{89}a^{9}-\frac{284}{89}a^{8}-\frac{71}{89}a^{7}+\frac{496}{89}a^{6}-\frac{335}{178}a^{5}-\frac{729}{178}a^{4}+\frac{189}{178}a^{3}-\frac{75}{178}a^{2}-\frac{37}{178}a-\frac{137}{178}$, $\frac{118}{89}a^{15}-\frac{311}{178}a^{14}+\frac{381}{178}a^{13}-\frac{2}{89}a^{12}-\frac{157}{89}a^{11}+\frac{1399}{178}a^{10}+\frac{33}{178}a^{9}-\frac{1651}{178}a^{8}+\frac{2905}{178}a^{7}+\frac{1259}{178}a^{6}-\frac{1367}{178}a^{5}+\frac{285}{89}a^{4}+\frac{310}{89}a^{3}-\frac{373}{178}a^{2}+\frac{473}{178}a-\frac{172}{89}$, $\frac{21}{178}a^{15}+\frac{33}{178}a^{14}-\frac{101}{178}a^{13}+\frac{143}{178}a^{12}-\frac{97}{178}a^{11}-\frac{13}{178}a^{10}+\frac{244}{89}a^{9}-\frac{284}{89}a^{8}-\frac{71}{89}a^{7}+\frac{496}{89}a^{6}-\frac{335}{178}a^{5}-\frac{729}{178}a^{4}+\frac{189}{178}a^{3}-\frac{75}{178}a^{2}-\frac{37}{178}a+\frac{41}{178}$, $\frac{126}{89}a^{15}-\frac{138}{89}a^{14}+\frac{234}{89}a^{13}-\frac{56}{89}a^{12}-\frac{26}{89}a^{11}+\frac{647}{89}a^{10}+\frac{127}{89}a^{9}-\frac{454}{89}a^{8}+\frac{1193}{89}a^{7}+\frac{807}{89}a^{6}+\frac{84}{89}a^{5}+3a^{4}+\frac{266}{89}a^{3}-\frac{29}{89}a^{2}+\frac{173}{89}a-\frac{90}{89}$, $\frac{20}{89}a^{15}-\frac{93}{89}a^{14}+\frac{128}{89}a^{13}-\frac{140}{89}a^{12}+\frac{28}{89}a^{11}+\frac{157}{89}a^{10}-\frac{400}{89}a^{9}-\frac{43}{89}a^{8}+\frac{493}{89}a^{7}-\frac{617}{89}a^{6}-\frac{315}{89}a^{5}+\frac{132}{89}a^{4}-\frac{98}{89}a^{3}-\frac{34}{89}a^{2}-\frac{6}{89}a-\frac{132}{89}$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 101.255505806 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 101.255505806 \cdot 1}{2\cdot\sqrt{152812774400000000}}\cr\approx \mathstrut & 0.314592068024 \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^16 - 2*x^15 + 3*x^14 - 2*x^13 + 6*x^11 - 4*x^10 - 4*x^9 + 15*x^8 - 4*x^7 - 4*x^6 + 6*x^5 - 2*x^3 + 3*x^2 - 2*x + 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^16 - 2*x^15 + 3*x^14 - 2*x^13 + 6*x^11 - 4*x^10 - 4*x^9 + 15*x^8 - 4*x^7 - 4*x^6 + 6*x^5 - 2*x^3 + 3*x^2 - 2*x + 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^16 - 2*x^15 + 3*x^14 - 2*x^13 + 6*x^11 - 4*x^10 - 4*x^9 + 15*x^8 - 4*x^7 - 4*x^6 + 6*x^5 - 2*x^3 + 3*x^2 - 2*x + 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^16 - 2*x^15 + 3*x^14 - 2*x^13 + 6*x^11 - 4*x^10 - 4*x^9 + 15*x^8 - 4*x^7 - 4*x^6 + 6*x^5 - 2*x^3 + 3*x^2 - 2*x + 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2^7.C_2\wr D_4$ (as 16T1778):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 16384
The 148 conjugacy class representatives for $C_2^7.C_2\wr D_4$
Character table for $C_2^7.C_2\wr D_4$

Intermediate fields

\(\Q(\sqrt{5}) \), 4.2.400.1, 8.0.27040000.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed
Minimal sibling: 16.4.188981478400000000.1

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.8.0.1}{8} }{,}\,{\href{/padicField/3.4.0.1}{4} }^{2}$ R ${\href{/padicField/7.8.0.1}{8} }{,}\,{\href{/padicField/7.4.0.1}{4} }^{2}$ R R ${\href{/padicField/17.8.0.1}{8} }{,}\,{\href{/padicField/17.4.0.1}{4} }^{2}$ R ${\href{/padicField/23.8.0.1}{8} }^{2}$ ${\href{/padicField/29.4.0.1}{4} }{,}\,{\href{/padicField/29.2.0.1}{2} }^{5}{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ ${\href{/padicField/31.4.0.1}{4} }^{3}{,}\,{\href{/padicField/31.2.0.1}{2} }^{2}$ ${\href{/padicField/37.4.0.1}{4} }^{3}{,}\,{\href{/padicField/37.2.0.1}{2} }^{2}$ ${\href{/padicField/41.8.0.1}{8} }^{2}$ ${\href{/padicField/43.8.0.1}{8} }{,}\,{\href{/padicField/43.4.0.1}{4} }^{2}$ ${\href{/padicField/47.4.0.1}{4} }^{4}$ ${\href{/padicField/53.4.0.1}{4} }^{3}{,}\,{\href{/padicField/53.2.0.1}{2} }^{2}$ ${\href{/padicField/59.8.0.1}{8} }{,}\,{\href{/padicField/59.4.0.1}{4} }{,}\,{\href{/padicField/59.2.0.1}{2} }{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.4.4.3$x^{4} + 2 x^{3} + 4 x^{2} + 12 x + 12$$2$$2$$4$$D_{4}$$[2, 2]^{2}$
2.4.4.3$x^{4} + 2 x^{3} + 4 x^{2} + 12 x + 12$$2$$2$$4$$D_{4}$$[2, 2]^{2}$
2.8.8.2$x^{8} + 8 x^{7} + 56 x^{6} + 240 x^{5} + 816 x^{4} + 2048 x^{3} + 3776 x^{2} + 4928 x + 3760$$2$$4$$8$$C_2^2:C_4$$[2, 2]^{4}$
\(5\) Copy content Toggle raw display 5.16.8.1$x^{16} + 160 x^{15} + 11240 x^{14} + 453600 x^{13} + 11536702 x^{12} + 190484240 x^{11} + 2020220586 x^{10} + 13041178608 x^{9} + 45239382035 x^{8} + 65384309200 x^{7} + 52374358166 x^{6} + 35488260768 x^{5} + 46408266743 x^{4} + 66345171264 x^{3} + 136057926318 x^{2} + 159173865296 x + 74196697609$$2$$8$$8$$C_8\times C_2$$[\ ]_{2}^{8}$
\(11\) Copy content Toggle raw display 11.2.1.2$x^{2} + 11$$2$$1$$1$$C_2$$[\ ]_{2}$
11.2.0.1$x^{2} + 7 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
11.4.0.1$x^{4} + 8 x^{2} + 10 x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
11.4.0.1$x^{4} + 8 x^{2} + 10 x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
11.4.0.1$x^{4} + 8 x^{2} + 10 x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
\(13\) Copy content Toggle raw display 13.4.0.1$x^{4} + 3 x^{2} + 12 x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
13.4.2.2$x^{4} - 156 x^{2} + 338$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
13.4.2.2$x^{4} - 156 x^{2} + 338$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
13.4.0.1$x^{4} + 3 x^{2} + 12 x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
\(19\) Copy content Toggle raw display 19.2.0.1$x^{2} + 18 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
19.2.1.2$x^{2} + 19$$2$$1$$1$$C_2$$[\ ]_{2}$
19.4.0.1$x^{4} + 2 x^{2} + 11 x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
19.8.0.1$x^{8} + x^{4} + 12 x^{3} + 10 x^{2} + 3 x + 2$$1$$8$$0$$C_8$$[\ ]^{8}$